Low-memory iterative density fitting

© 2015 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 36(2015), 20 vom: 30. Juli, Seite 1521-35
1. Verfasser: Grajciar, Lukáš (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article Research Support, Non-U.S. Gov't continuous fast multipole method density fitting, memory efficient algorithm density functional theory preconditioned conjugate gradient method
LEADER 01000naa a22002652 4500
001 NLM249803704
003 DE-627
005 20231224154352.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.23961  |2 doi 
028 5 2 |a pubmed24n0832.xml 
035 |a (DE-627)NLM249803704 
035 |a (NLM)26058451 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Grajciar, Lukáš  |e verfasserin  |4 aut 
245 1 0 |a Low-memory iterative density fitting 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 31.08.2015 
500 |a Date Revised 27.06.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2015 Wiley Periodicals, Inc. 
520 |a A new low-memory modification of the density fitting approximation based on a combination of a continuous fast multipole method (CFMM) and a preconditioned conjugate gradient solver is presented. Iterative conjugate gradient solver uses preconditioners formed from blocks of the Coulomb metric matrix that decrease the number of iterations needed for convergence by up to one order of magnitude. The matrix-vector products needed within the iterative algorithm are calculated using CFMM, which evaluates them with the linear scaling memory requirements only. Compared with the standard density fitting implementation, up to 15-fold reduction of the memory requirements is achieved for the most efficient preconditioner at a cost of only 25% increase in computational time. The potential of the method is demonstrated by performing density functional theory calculations for zeolite fragment with 2592 atoms and 121,248 auxiliary basis functions on a single 12-core CPU workstation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a continuous fast multipole method 
650 4 |a density fitting, memory efficient algorithm 
650 4 |a density functional theory 
650 4 |a preconditioned conjugate gradient method 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 36(2015), 20 vom: 30. Juli, Seite 1521-35  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:36  |g year:2015  |g number:20  |g day:30  |g month:07  |g pages:1521-35 
856 4 0 |u http://dx.doi.org/10.1002/jcc.23961  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2015  |e 20  |b 30  |c 07  |h 1521-35