Constructing a Nonnegative Low-Rank and Sparse Graph With Data-Adaptive Features

This paper aims at constructing a good graph to discover the intrinsic data structures under a semisupervised learning setting. First, we propose to build a nonnegative low-rank and sparse (referred to as NNLRS) graph for the given data representation. In particular, the weights of edges in the grap...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 02. Nov., Seite 3717-28
Auteur principal: Zhuang, Liansheng (Auteur)
Autres auteurs: Gao, Shenghua, Tang, Jinhui, Wang, Jingjing, Lin, Zhouchen, Ma, Yi, Yu, Nenghai
Format: Article en ligne
Langue:English
Publié: 2015
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, Non-U.S. Gov't