Constructing a Nonnegative Low-Rank and Sparse Graph With Data-Adaptive Features

This paper aims at constructing a good graph to discover the intrinsic data structures under a semisupervised learning setting. First, we propose to build a nonnegative low-rank and sparse (referred to as NNLRS) graph for the given data representation. In particular, the weights of edges in the grap...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 02. Nov., Seite 3717-28
1. Verfasser: Zhuang, Liansheng (VerfasserIn)
Weitere Verfasser: Gao, Shenghua, Tang, Jinhui, Wang, Jingjing, Lin, Zhouchen, Ma, Yi, Yu, Nenghai
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't