Continuous Depth Map Reconstruction From Light Fields

In this paper, we investigate how the recently emerged photography technology--the light field--can benefit depth map estimation, a challenging computer vision problem. A novel framework is proposed to reconstruct continuous depth maps from light field data. Unlike many traditional methods for the s...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 08. Nov., Seite 3257-65
1. Verfasser: Li, Jianqiao (VerfasserIn)
Weitere Verfasser: Lu, Minlong, Li, Ze-Nian
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM249761130
003 DE-627
005 20231224154259.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2440760  |2 doi 
028 5 2 |a pubmed24n0832.xml 
035 |a (DE-627)NLM249761130 
035 |a (NLM)26054068 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Li, Jianqiao  |e verfasserin  |4 aut 
245 1 0 |a Continuous Depth Map Reconstruction From Light Fields 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2015 
500 |a Date Revised 26.06.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we investigate how the recently emerged photography technology--the light field--can benefit depth map estimation, a challenging computer vision problem. A novel framework is proposed to reconstruct continuous depth maps from light field data. Unlike many traditional methods for the stereo matching problem, the proposed method does not need to quantize the depth range. By making use of the structure information amongst the densely sampled views in light field data, we can obtain dense and relatively reliable local estimations. Starting from initial estimations, we go on to propose an optimization method based on solving a sparse linear system iteratively with a conjugate gradient method. Two different affinity matrices for the linear system are employed to balance the efficiency and quality of the optimization. Then, a depth-assisted segmentation method is introduced so that different segments can employ different affinity matrices. Experiment results on both synthetic and real light fields demonstrate that our continuous results are more accurate, efficient, and able to preserve more details compared with discrete approaches 
650 4 |a Journal Article 
700 1 |a Lu, Minlong  |e verfasserin  |4 aut 
700 1 |a Li, Ze-Nian  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 11 vom: 08. Nov., Seite 3257-65  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:11  |g day:08  |g month:11  |g pages:3257-65 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2440760  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 11  |b 08  |c 11  |h 3257-65