Surface-Functionalized Biodegradable Nanoparticles Consisting of Amphiphilic Graft Polymers Prepared by Radical Copolymerization of 2-Methylene-1,3-Dioxepane and Macromonomers
Biodegradable polyester-based nanoparticles were prepared by the precipitation of amphiphilic graft copolymers, which were prepared by the ring-opening radical copolymerization of 2-methylene-1,3-dioxepane (MDO) and amphiphilic macromonomers. The diameter of the nanoparticles was controlled by the d...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 24 vom: 23. Juni, Seite 6879-85 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't 2-methylene-1,3-dioxepane Free Radicals Oxepins Polymers Surface-Active Agents |
Zusammenfassung: | Biodegradable polyester-based nanoparticles were prepared by the precipitation of amphiphilic graft copolymers, which were prepared by the ring-opening radical copolymerization of 2-methylene-1,3-dioxepane (MDO) and amphiphilic macromonomers. The diameter of the nanoparticles was controlled by the degree of grafting and the molecular weight of the grafting oligomer. PMDO-g-poly(ethylene glycol) nanoparticles were degraded by the alkaline hydrolysis of the polyester backbone. Although the colloidal stability of nanoparticles was retained due to the reorientation of the PEG chains during hydrolysis, the size of the nanoparticles decreased with increasing hydrolysis time. We also prepared PMDO-g-poly(N-isopropylacrylamide) nanoparticles, which show aggregation in response to increasing temperature |
---|---|
Beschreibung: | Date Completed 11.03.2016 Date Revised 23.06.2015 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.5b01149 |