Emulsions Stabilized by Silica Rods via Arrested Demixing
A binary liquid-liquid mixture with a lower critical solution temperature (LCST) when heated above a critical temperature undergoes demixing. During the initial phase of demixing process, high-energy liquid-liquid interfaces are created before both liquids eventually phase separate. By incorporating...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 24 vom: 23. Juni, Seite 6649-54 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | A binary liquid-liquid mixture with a lower critical solution temperature (LCST) when heated above a critical temperature undergoes demixing. During the initial phase of demixing process, high-energy liquid-liquid interfaces are created before both liquids eventually phase separate. By incorporating well-characterized colloidal silica rods in a homogeneous one-phase liquid-liquid mixture of lutidine/water (L/W) before inducing phase separation, we show that colloidal rod stabilized Pickering emulsions can be obtained. We show that the droplet size of Pickering emulsions can be tuned by varying particle concentration, and the droplet size distribution follows the prediction of the limited coalescence model |
---|---|
Beschreibung: | Date Completed 24.08.2015 Date Revised 23.06.2015 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.5b00775 |