An analytical bond-order potential for carbon

© 2015 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 36(2015), 23 vom: 05. Sept., Seite 1719-35
1. Verfasser: Zhou, X W (VerfasserIn)
Weitere Verfasser: Ward, D K, Foster, M E
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article carbon growth simulation interatomic potential molecular dynamics
LEADER 01000naa a22002652 4500
001 NLM249414899
003 DE-627
005 20231224153526.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.23949  |2 doi 
028 5 2 |a pubmed24n0831.xml 
035 |a (DE-627)NLM249414899 
035 |a (NLM)26018402 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Zhou, X W  |e verfasserin  |4 aut 
245 1 3 |a An analytical bond-order potential for carbon 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.09.2015 
500 |a Date Revised 22.07.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a © 2015 Wiley Periodicals, Inc. 
520 |a Carbon is the most widely studied material today because it exhibits special properties not seen in any other materials when in nano dimensions such as nanotube and graphene. Reduction of material defects created during synthesis has become critical to realize the full potential of carbon structures. Molecular dynamics (MD) simulations, in principle, allow defect formation mechanisms to be studied with high fidelity, and can, therefore, help guide experiments for defect reduction. Such MD simulations must satisfy a set of stringent requirements. First, they must employ an interatomic potential formalism that is transferable to a variety of carbon structures. Second, the potential needs to be appropriately parameterized to capture the property trends of important carbon structures, in particular, diamond, graphite, graphene, and nanotubes. Most importantly, the potential must predict the crystalline growth of the correct phases during direct MD simulations of synthesis to achieve a predictive simulation of defect formation. Because an unlimited number of structures not included in the potential parameterization are encountered, the literature carbon potentials are often not sufficient for growth simulations. We have developed an analytical bond order potential for carbon, and have made it available through the public MD simulation package LAMMPS. We demonstrate that our potential reasonably captures the property trends of important carbon phases. Stringent MD simulations convincingly show that our potential accounts not only for the crystalline growth of graphene, graphite, and carbon nanotubes but also for the transformation of graphite to diamond at high pressure 
650 4 |a Journal Article 
650 4 |a carbon 
650 4 |a growth simulation 
650 4 |a interatomic potential 
650 4 |a molecular dynamics 
700 1 |a Ward, D K  |e verfasserin  |4 aut 
700 1 |a Foster, M E  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 36(2015), 23 vom: 05. Sept., Seite 1719-35  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:36  |g year:2015  |g number:23  |g day:05  |g month:09  |g pages:1719-35 
856 4 0 |u http://dx.doi.org/10.1002/jcc.23949  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2015  |e 23  |b 05  |c 09  |h 1719-35