MP2 calculation of (77) Se NMR chemical shifts taking into account relativistic corrections

Copyright © 2015 John Wiley & Sons, Ltd.

Bibliographische Detailangaben
Veröffentlicht in:Magnetic resonance in chemistry : MRC. - 1985. - 53(2015), 7 vom: 01. Juli, Seite 485-92
1. Verfasser: Rusakov, Yury Yu (VerfasserIn)
Weitere Verfasser: Rusakova, Irina L, Krivdin, Leonid B
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Magnetic resonance in chemistry : MRC
Schlagworte:Journal Article 77Se NMR GIAO-MP2 chemical shift locally dense basis set magnetic shielding constant organoselenium compounds relativistic effects
Beschreibung
Zusammenfassung:Copyright © 2015 John Wiley & Sons, Ltd.
The main factors affecting the accuracy and computational cost of the Second-order Möller-Plesset perturbation theory (MP2) calculation of (77) Se NMR chemical shifts (methods and basis sets, relativistic corrections, and solvent effects) are addressed with a special emphasis on relativistic effects. For the latter, paramagnetic contribution (390-466 ppm) dominates over diamagnetic term (192-198 ppm) resulting in a total shielding relativistic correction of about 230-260 ppm (some 15% of the total values of selenium absolute shielding constants). Diamagnetic term is practically constant, while paramagnetic contribution spans over 70-80 ppm. In the (77) Se NMR chemical shifts scale, relativistic corrections are about 20-30 ppm (some 5% of the total values of selenium chemical shifts). Solvent effects evaluated within the polarizable continuum solvation model are of the same order of magnitude as relativistic corrections (about 5%). For the practical calculations of (77) Se NMR chemical shifts of the medium-sized organoselenium compounds, the most efficient computational protocols employing relativistic Dyall's basis sets and taking into account relativistic and solvent corrections are suggested. The best result is characterized by a mean absolute error of 17 ppm for the span of (77) Se NMR chemical shifts reaching 2500 ppm resulting in a mean absolute percentage error of 0.7%
Beschreibung:Date Completed 26.08.2015
Date Revised 24.06.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1097-458X
DOI:10.1002/mrc.4226