Temperature-Induced Assembly of Monodisperse, Covalently Cross-Linked, and Degradable Poly(N-isopropylacrylamide) Microgels Based on Oligomeric Precursors

A simple, rapid, solvent-free, and scalable thermally driven self-assembly approach is described to produce monodisperse, covalently cross-linked, and degradable poly(N-isopropylacrylamide) (PNIPAM) microgels based on mixing hydrazide (PNIPAM-Hzd) and aldehyde (PNIPAM-Ald) functionalized PNIPAM prec...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1999. - 31(2015), 21 vom: 02. Juni, Seite 5767-78
1. Verfasser: Sivakumaran, Daryl (VerfasserIn)
Weitere Verfasser: Mueller, Eva, Hoare, Todd
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Acrylic Resins Gels Polymers poly-N-isopropylacrylamide 25189-55-3
Beschreibung
Zusammenfassung:A simple, rapid, solvent-free, and scalable thermally driven self-assembly approach is described to produce monodisperse, covalently cross-linked, and degradable poly(N-isopropylacrylamide) (PNIPAM) microgels based on mixing hydrazide (PNIPAM-Hzd) and aldehyde (PNIPAM-Ald) functionalized PNIPAM precursors. Preheating of a seed PNIPAM-Hzd solution above its phase transition temperature produces nanoaggregates that are subsequently stabilized and cross-linked by the addition of PNIPAM-Ald. The ratio of PNIPAM-Hzd:PNIPAM-Ald used to prepare the microgels, the time between PNIPAM-Ald addition and cooling, the temperature to which the PNIPAM-Hzd polymer solution is preheated, and the concentration of PNIPAM-Hzd in the initial seed solution can all be used to control the size of the resulting microgels. The microgels exhibit similar thermal phase transition behavior to conventional precipitation-based microgels but are fully degradable into oligomeric precursor polymers. The microgels can also be lyophilized and redispersed without any change in colloidal stability or particle size and exhibit no significant cytotoxicity in vitro. We anticipate that microgels fabricated using this approach may facilitate translation of the attractive properties of such microgels in vivo without the concerns regarding microgel clearance that exist with other PNIPAM-based microgels
Beschreibung:Date Completed 03.03.2016
Date Revised 02.06.2015
published: Print-Electronic
Citation Status MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b01421