Heterogeneous Graph Propagation for Large-Scale Web Image Search

State-of-the-art web image search frameworks are often based on the bag-of-visual-words (BoVWs) model and the inverted index structure. Despite the simplicity, efficiency, and scalability, they often suffer from low precision and/or recall, due to the limited stability of local features and the cons...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 11 vom: 04. Nov., Seite 4287-98
1. Verfasser: Xie, Lingxi (VerfasserIn)
Weitere Verfasser: Tian, Qi, Zhou, Wengang, Zhang, Bo
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM249019671
003 DE-627
005 20231224152653.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2432673  |2 doi 
028 5 2 |a pubmed24n0830.xml 
035 |a (DE-627)NLM249019671 
035 |a (NLM)25974934 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xie, Lingxi  |e verfasserin  |4 aut 
245 1 0 |a Heterogeneous Graph Propagation for Large-Scale Web Image Search 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 16.09.2015 
500 |a Date Revised 10.09.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a State-of-the-art web image search frameworks are often based on the bag-of-visual-words (BoVWs) model and the inverted index structure. Despite the simplicity, efficiency, and scalability, they often suffer from low precision and/or recall, due to the limited stability of local features and the considerable information loss on the quantization stage. To refine the quality of retrieved images, various postprocessing methods have been adopted after the initial search process. In this paper, we investigate the online querying process from a graph-based perspective. We introduce a heterogeneous graph model containing both image and feature nodes explicitly, and propose an efficient reranking approach consisting of two successive modules, i.e., incremental query expansion and image-feature voting, to improve the recall and precision, respectively. Compared with the conventional reranking algorithms, our method does not require using geometric information of visual words, therefore enjoys low consumptions of both time and memory. Moreover, our method is independent of the initial search process, and could cooperate with many BoVW-based image search pipelines, or adopted after other postprocessing algorithms. We evaluate our approach on large-scale image search tasks and verify its competitive search performance 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Tian, Qi  |e verfasserin  |4 aut 
700 1 |a Zhou, Wengang  |e verfasserin  |4 aut 
700 1 |a Zhang, Bo  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 11 vom: 04. Nov., Seite 4287-98  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:11  |g day:04  |g month:11  |g pages:4287-98 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2432673  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 11  |b 04  |c 11  |h 4287-98