Coupled projections for adaptation of dictionaries

Data-driven dictionaries have produced the state-of-the-art results in various classification tasks. However, when the target data has a different distribution than the source data, the learned sparse representation may not be optimal. In this paper, we investigate if it is possible to optimally rep...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 10 vom: 12. Okt., Seite 2941-54
1. Verfasser: Shekhar, Sumit (VerfasserIn)
Weitere Verfasser: Patel, Vishal M, Van Nguyen, Hien, Chellappa, Rama
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
Beschreibung
Zusammenfassung:Data-driven dictionaries have produced the state-of-the-art results in various classification tasks. However, when the target data has a different distribution than the source data, the learned sparse representation may not be optimal. In this paper, we investigate if it is possible to optimally represent both source and target by a common dictionary. In particular, we describe a technique which jointly learns projections of data in the two domains, and a latent dictionary which can succinctly represent both the domains in the projected low-dimensional space. The algorithm is modified to learn a common discriminative dictionary, which can further improve the classification performance. The algorithm is also effective for adaptation across multiple domains and is extensible to nonlinear feature spaces. The proposed approach does not require any explicit correspondences between the source and target domains, and yields good results even when there are only a few labels available in the target domain. We also extend it to unsupervised adaptation in cases where the same feature is extracted across all domains. Further, it can also be used for heterogeneous domain adaptation, where different features are extracted for different domains. Various recognition experiments show that the proposed method performs on par or better than competitive state-of-the-art methods
Beschreibung:Date Completed 10.08.2015
Date Revised 09.06.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2015.2431440