Video deraining and desnowing using temporal correlation and low-rank matrix completion

A novel algorithm to remove rain or snow streaks from a video sequence using temporal correlation and low-rank matrix completion is proposed in this paper. Based on the observation that rain streaks are too small and move too fast to affect the optical flow estimation between consecutive frames, we...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 9 vom: 08. Sept., Seite 2658-70
1. Verfasser: Kim, Jin-Hwan (VerfasserIn)
Weitere Verfasser: Sim, Jae-Young, Kim, Chang-Su
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM248834746
003 DE-627
005 20250218122733.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2428933  |2 doi 
028 5 2 |a pubmed25n0829.xml 
035 |a (DE-627)NLM248834746 
035 |a (NLM)25955988 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kim, Jin-Hwan  |e verfasserin  |4 aut 
245 1 0 |a Video deraining and desnowing using temporal correlation and low-rank matrix completion 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 28.07.2015 
500 |a Date Revised 27.05.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a A novel algorithm to remove rain or snow streaks from a video sequence using temporal correlation and low-rank matrix completion is proposed in this paper. Based on the observation that rain streaks are too small and move too fast to affect the optical flow estimation between consecutive frames, we obtain an initial rain map by subtracting temporally warped frames from a current frame. Then, we decompose the initial rain map into basis vectors based on the sparse representation, and classify those basis vectors into rain streak ones and outliers with a support vector machine. We then refine the rain map by excluding the outliers. Finally, we remove the detected rain streaks by employing a low-rank matrix completion technique. Furthermore, we extend the proposed algorithm to stereo video deraining. Experimental results demonstrate that the proposed algorithm detects and removes rain or snow streaks efficiently, outperforming conventional algorithms 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Sim, Jae-Young  |e verfasserin  |4 aut 
700 1 |a Kim, Chang-Su  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 9 vom: 08. Sept., Seite 2658-70  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:9  |g day:08  |g month:09  |g pages:2658-70 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2428933  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 9  |b 08  |c 09  |h 2658-70