Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications

We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT)...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment. - 1987. - 784(2015) vom: 01. Juni, Seite 531-537
1. Verfasser: Barber, W C (VerfasserIn)
Weitere Verfasser: Wessel, J C, Nygard, E, Iwanczyk, J S
Format: Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment
Schlagworte:Journal Article ASIC CT CZT CdTe X-ray semiconductor
LEADER 01000caa a22002652 4500
001 NLM248657232
003 DE-627
005 20250218115300.0
007 tu
008 231224s2015 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0828.xml 
035 |a (DE-627)NLM248657232 
035 |a (NLM)25937684 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Barber, W C  |e verfasserin  |4 aut 
245 1 0 |a Energy dispersive CdTe and CdZnTe detectors for spectral clinical CT and NDT applications 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 20.11.2019 
500 |a published: Print 
500 |a Citation Status Publisher 
520 |a We are developing room temperature compound semiconductor detectors for applications in energy-resolved high-flux single x-ray photon-counting spectral computed tomography (CT), including functional imaging with nanoparticle contrast agents for medical applications and non destructive testing (NDT) for security applications. Energy-resolved photon-counting can provide reduced patient dose through optimal energy weighting for a particular imaging task in CT, functional contrast enhancement through spectroscopic imaging of metal nanoparticles in CT, and compositional analysis through multiple basis function material decomposition in CT and NDT. These applications produce high input count rates from an x-ray generator delivered to the detector. Therefore, in order to achieve energy-resolved single photon counting in these applications, a high output count rate (OCR) for an energy-dispersive detector must be achieved at the required spatial resolution and across the required dynamic range for the application. The required performance in terms of the OCR, spatial resolution, and dynamic range must be obtained with sufficient field of view (FOV) for the application thus requiring the tiling of pixel arrays and scanning techniques. Room temperature cadmium telluride (CdTe) and cadmium zinc telluride (CdZnTe) compound semiconductors, operating as direct conversion x-ray sensors, can provide the required speed when connected to application specific integrated circuits (ASICs) operating at fast peaking times with multiple fixed thresholds per pixel provided the sensors are designed for rapid signal formation across the x-ray energy ranges of the application at the required energy and spatial resolutions, and at a sufficiently high detective quantum efficiency (DQE). We have developed high-flux energy-resolved photon-counting x-ray imaging array sensors using pixellated CdTe and CdZnTe semiconductors optimized for clinical CT and security NDT. We have also fabricated high-flux ASICs with a two dimensional (2D) array of inputs for readout from the sensors. The sensors are guard ring free and have a 2D array of pixels and can be tiled in 2D while preserving pixel pitch. The 2D ASICs have four energy bins with a linear energy response across sufficient dynamic range for clinical CT and some NDT applications. The ASICs can also be tiled in 2D and are designed to fit within the active area of the sensors. We have measured several important performance parameters including; the output count rate (OCR) in excess of 20 million counts per second per square mm with a minimum loss of counts due to pulse pile-up, an energy resolution of 7 keV full width at half maximum (FWHM) across the entire dynamic range, and a noise floor about 20keV. This is achieved by directly interconnecting the ASIC inputs to the pixels of the CdZnTe sensors incurring very little input capacitance to the ASICs. We present measurements of the performance of the CdTe and CdZnTe sensors including the OCR, FWHM energy resolution, noise floor, as well as the temporal stability and uniformity under the rapidly varying high flux expected in CT and NDT applications 
650 4 |a Journal Article 
650 4 |a ASIC 
650 4 |a CT 
650 4 |a CZT 
650 4 |a CdTe 
650 4 |a X-ray 
650 4 |a semiconductor 
700 1 |a Wessel, J C  |e verfasserin  |4 aut 
700 1 |a Nygard, E  |e verfasserin  |4 aut 
700 1 |a Iwanczyk, J S  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Nuclear instruments & methods in physics research. Section A, Accelerators, spectrometers, detectors and associated equipment  |d 1987  |g 784(2015) vom: 01. Juni, Seite 531-537  |w (DE-627)NLM098171771  |x 0168-9002  |7 nnns 
773 1 8 |g volume:784  |g year:2015  |g day:01  |g month:06  |g pages:531-537 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 784  |j 2015  |b 01  |c 06  |h 531-537