Numerical Method of Characteristics for One-Dimensional Blood Flow

Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and disc...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics. - 1986. - 294(2015) vom: 01. Aug., Seite 96-109
1. Verfasser: Acosta, Sebastian (VerfasserIn)
Weitere Verfasser: Puelz, Charles, Riviére, Béatrice, Penny, Daniel J, Rusin, Craig G
Format: Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of computational physics
Schlagworte:Journal Article Blood flow characteristics computational hemodynamics wave propagation
LEADER 01000naa a22002652 4500
001 NLM248597736
003 DE-627
005 20231224151741.0
007 tu
008 231224s2015 xx ||||| 00| ||eng c
028 5 2 |a pubmed24n0828.xml 
035 |a (DE-627)NLM248597736 
035 |a (NLM)25931614 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Acosta, Sebastian  |e verfasserin  |4 aut 
245 1 0 |a Numerical Method of Characteristics for One-Dimensional Blood Flow 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 01.10.2020 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Mathematical modeling at the level of the full cardiovascular system requires the numerical approximation of solutions to a one-dimensional nonlinear hyperbolic system describing flow in a single vessel. This model is often simulated by computationally intensive methods like finite elements and discontinuous Galerkin, while some recent applications require more efficient approaches (e.g. for real-time clinical decision support, phenomena occurring over multiple cardiac cycles, iterative solutions to optimization/inverse problems, and uncertainty quantification). Further, the high speed of pressure waves in blood vessels greatly restricts the time step needed for stability in explicit schemes. We address both cost and stability by presenting an efficient and unconditionally stable method for approximating solutions to diagonal nonlinear hyperbolic systems. Theoretical analysis of the algorithm is given along with a comparison of our method to a discontinuous Galerkin implementation. Lastly, we demonstrate the utility of the proposed method by implementing it on small and large arterial networks of vessels whose elastic and geometrical parameters are physiologically relevant 
650 4 |a Journal Article 
650 4 |a Blood flow 
650 4 |a characteristics 
650 4 |a computational hemodynamics 
650 4 |a wave propagation 
700 1 |a Puelz, Charles  |e verfasserin  |4 aut 
700 1 |a Riviére, Béatrice  |e verfasserin  |4 aut 
700 1 |a Penny, Daniel J  |e verfasserin  |4 aut 
700 1 |a Rusin, Craig G  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 294(2015) vom: 01. Aug., Seite 96-109  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnns 
773 1 8 |g volume:294  |g year:2015  |g day:01  |g month:08  |g pages:96-109 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 294  |j 2015  |b 01  |c 08  |h 96-109