Self-assembled monolayers on a ferromagnetic permalloy surface

Self-assembled monolayers (SAMs) are nowadays broadly used as surface protectors or modifiers and play a key role in many technological applications. This has motivated the study of their formation in all kind of materials; however, and despite the current interest in molecular spintronics, the stud...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 19 vom: 19. Mai, Seite 5311-8
1. Verfasser: Mattera, Michele (VerfasserIn)
Weitere Verfasser: Torres-Cavanillas, Ramón, Prieto-Ruiz, Juan P, Prima-García, Helena, Tatay, Sergio, Forment-Aliaga, Alicia, Coronado, Eugenio
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Self-assembled monolayers (SAMs) are nowadays broadly used as surface protectors or modifiers and play a key role in many technological applications. This has motivated the study of their formation in all kind of materials; however, and despite the current interest in molecular spintronics, the study of SAMs on ferromagnetic surfaces remains almost unexplored. In this paper, we report for the first time a methodology for the formation of SAMs of n-alkylphosphonic acids on permalloy in ambient conditions. The formed monolayers have been fully characterized by means of contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, matrix assisted laser desorption ionization time-of-flight mass spectrometry, infrared reflection absorption spectroscopy, and X-ray reflectometry. Additionally, the magnetic stability of the modified permalloy after the solution process required for the SAM formation has been confirmed by magneto-optical Kerr effect magnetometry. Moreover, by means of microcontact printing lithography, very accurate SAM patterns have been transferred onto permalloy surfaces and used as resist mask in a chemical etching process giving rise to submicrometric permalloy surface patterns with potential interest in nanomagnetism, spintronics, and storage technologies
Beschreibung:Date Completed 16.07.2015
Date Revised 19.05.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/acs.langmuir.5b00988