Self-assembled monolayers on a ferromagnetic permalloy surface
Self-assembled monolayers (SAMs) are nowadays broadly used as surface protectors or modifiers and play a key role in many technological applications. This has motivated the study of their formation in all kind of materials; however, and despite the current interest in molecular spintronics, the stud...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 19 vom: 19. Mai, Seite 5311-8 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Self-assembled monolayers (SAMs) are nowadays broadly used as surface protectors or modifiers and play a key role in many technological applications. This has motivated the study of their formation in all kind of materials; however, and despite the current interest in molecular spintronics, the study of SAMs on ferromagnetic surfaces remains almost unexplored. In this paper, we report for the first time a methodology for the formation of SAMs of n-alkylphosphonic acids on permalloy in ambient conditions. The formed monolayers have been fully characterized by means of contact angle measurements, atomic force microscopy, X-ray photoelectron spectroscopy, matrix assisted laser desorption ionization time-of-flight mass spectrometry, infrared reflection absorption spectroscopy, and X-ray reflectometry. Additionally, the magnetic stability of the modified permalloy after the solution process required for the SAM formation has been confirmed by magneto-optical Kerr effect magnetometry. Moreover, by means of microcontact printing lithography, very accurate SAM patterns have been transferred onto permalloy surfaces and used as resist mask in a chemical etching process giving rise to submicrometric permalloy surface patterns with potential interest in nanomagnetism, spintronics, and storage technologies |
---|---|
Beschreibung: | Date Completed 16.07.2015 Date Revised 19.05.2015 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.5b00988 |