A feature-enriched completely blind image quality evaluator

Existing blind image quality assessment (BIQA) methods are mostly opinion-aware. They learn regression models from training images with associated human subjective scores to predict the perceptual quality of test images. Such opinion-aware methods, however, require a large amount of training samples...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 8 vom: 28. Aug., Seite 2579-91
1. Verfasser: Lin Zhang (VerfasserIn)
Weitere Verfasser: Lei Zhang, Bovik, Alan C
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM248454978
003 DE-627
005 20231224151435.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2426416  |2 doi 
028 5 2 |a pubmed24n0828.xml 
035 |a (DE-627)NLM248454978 
035 |a (NLM)25915960 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lin Zhang  |e verfasserin  |4 aut 
245 1 2 |a A feature-enriched completely blind image quality evaluator 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.02.2016 
500 |a Date Revised 19.06.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Existing blind image quality assessment (BIQA) methods are mostly opinion-aware. They learn regression models from training images with associated human subjective scores to predict the perceptual quality of test images. Such opinion-aware methods, however, require a large amount of training samples with associated human subjective scores and of a variety of distortion types. The BIQA models learned by opinion-aware methods often have weak generalization capability, hereby limiting their usability in practice. By comparison, opinion-unaware methods do not need human subjective scores for training, and thus have greater potential for good generalization capability. Unfortunately, thus far no opinion-unaware BIQA method has shown consistently better quality prediction accuracy than the opinion-aware methods. Here, we aim to develop an opinion-unaware BIQA method that can compete with, and perhaps outperform, the existing opinion-aware methods. By integrating the features of natural image statistics derived from multiple cues, we learn a multivariate Gaussian model of image patches from a collection of pristine natural images. Using the learned multivariate Gaussian model, a Bhattacharyya-like distance is used to measure the quality of each image patch, and then an overall quality score is obtained by average pooling. The proposed BIQA method does not need any distorted sample images nor subjective quality scores for training, yet extensive experiments demonstrate its superior quality-prediction performance to the state-of-the-art opinion-aware BIQA methods. The MATLAB source code of our algorithm is publicly available at www.comp.polyu.edu.hk/~cslzhang/IQA/ILNIQE/ILNIQE.htm 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Lei Zhang  |e verfasserin  |4 aut 
700 1 |a Bovik, Alan C  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 8 vom: 28. Aug., Seite 2579-91  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:8  |g day:28  |g month:08  |g pages:2579-91 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2426416  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 8  |b 28  |c 08  |h 2579-91