Exploring sparseness and self-similarity for action recognition

We propose that the dynamics of an action in video data forms a sparse self-similar manifold in the space-time volume, which can be fully characterized by a linear rank decomposition. Inspired by the recurrence plot theory, we introduce the concept of Joint Self-Similarity Volume (Joint-SSV) to mode...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 8 vom: 25. Aug., Seite 2488-501
1. Verfasser: Chuan Sun (VerfasserIn)
Weitere Verfasser: Junejo, Imran Nazir, Tappen, Marshall, Foroosh, Hassan
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM248400142
003 DE-627
005 20250218110050.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2424316  |2 doi 
028 5 2 |a pubmed25n0827.xml 
035 |a (DE-627)NLM248400142 
035 |a (NLM)25910089 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Chuan Sun  |e verfasserin  |4 aut 
245 1 0 |a Exploring sparseness and self-similarity for action recognition 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.06.2015 
500 |a Date Revised 19.06.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We propose that the dynamics of an action in video data forms a sparse self-similar manifold in the space-time volume, which can be fully characterized by a linear rank decomposition. Inspired by the recurrence plot theory, we introduce the concept of Joint Self-Similarity Volume (Joint-SSV) to model this sparse action manifold, and hence propose a new optimized rank-1 tensor approximation of the Joint-SSV to obtain compact low-dimensional descriptors that very accurately characterize an action in a video sequence. We show that these descriptor vectors make it possible to recognize actions without explicitly aligning the videos in time in order to compensate for speed of execution or differences in video frame rates. Moreover, we show that the proposed method is generic, in the sense that it can be applied using different low-level features, such as silhouettes, tracked points, histogram of oriented gradients, and so forth. Therefore, our method does not necessarily require explicit tracking of features in the space-time volume. Our experimental results on five public data sets demonstrate that our method produces promising results and outperforms many baseline methods 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Junejo, Imran Nazir  |e verfasserin  |4 aut 
700 1 |a Tappen, Marshall  |e verfasserin  |4 aut 
700 1 |a Foroosh, Hassan  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 8 vom: 25. Aug., Seite 2488-501  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:8  |g day:25  |g month:08  |g pages:2488-501 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2424316  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 8  |b 25  |c 08  |h 2488-501