The symbiosis between Nicotiana tabacum and the endomycorrhizal fungus Funneliformis mosseae increases the plant glutathione level and decreases leaf cadmium and root arsenic contents

Copyright © 2015 Elsevier Masson SAS. All rights reserved.

Bibliographische Detailangaben
Veröffentlicht in:Plant physiology and biochemistry : PPB. - 1991. - 92(2015) vom: 21. Juli, Seite 11-8
1. Verfasser: Degola, Francesca (VerfasserIn)
Weitere Verfasser: Fattorini, Laura, Bona, Elisa, Sprimuto, Christian Triscari, Argese, Emanuele, Berta, Graziella, Sanità di Toppi, Luigi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Plant physiology and biochemistry : PPB
Schlagworte:Journal Article Research Support, Non-U.S. Gov't AM fungi Arsenic Cadmium Cigarettes Glutathione Mycorrhiza Smoking Tobacco mehr... Antioxidants Soil Pollutants 00BH33GNGH GAN16C9B8O N712M78A8G
Beschreibung
Zusammenfassung:Copyright © 2015 Elsevier Masson SAS. All rights reserved.
Over time, anthropogenic activities have led to severe cadmium (Cd) and arsenic (As) pollution in several environments. Plants inhabiting metal(loid)-contaminated areas should be able to sequester and detoxify these toxic elements as soon as they enter roots and leaves. We postulated here that an important role in protecting plants from excessive metal(loid) accumulation and toxicity might be played by arbuscular mycorrhizal (AM) fungi. In fact, human exploitation of plant material derived from Cd- and As-polluted environments may lead to a noxious intake of these toxic elements; in particular, a possible source of Cd and As for humans is given by cigarette and cigar smoke. We investigated the role of AM fungus Funneliformis mosseae (T.H. Nicolson & Gerd.) C. Walker & A. Schüßler in protecting Nicotiana tabacum L. (cv. Petit Havana) from the above-mentioned metal(loid) stress. Our findings proved that the AM symbiosis is effective in increasing the plant tissue content of the antioxidant glutathione (GSH), in influencing the amount of metal(loid)-induced chelators as phytochelatins, and in reducing the Cd and As content in leaves and roots of adult tobacco plants. These results might also prove useful in improving the quality of commercial tobacco, thus reducing the risks to human health due to inhalation of toxic elements contained in smoking products
Beschreibung:Date Completed 05.02.2016
Date Revised 13.12.2023
published: Print-Electronic
Citation Status MEDLINE
ISSN:1873-2690
DOI:10.1016/j.plaphy.2015.04.001