Global convergence in leaf respiration from estimates of thermal acclimation across time and space

© 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

Bibliographische Detailangaben
Veröffentlicht in:The New phytologist. - 1979. - 207(2015), 4 vom: 21. Sept., Seite 1026-37
1. Verfasser: Vanderwel, Mark C (VerfasserIn)
Weitere Verfasser: Slot, Martijn, Lichstein, Jeremy W, Reich, Peter B, Kattge, Jens, Atkin, Owen K, Bloomfield, Keith J, Tjoelker, Mark G, Kitajima, Kaoru
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:The New phytologist
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S. autotrophic respiration carbon flux climate change temperature terrestrial biosphere modelling thermal acclimation
Beschreibung
Zusammenfassung:© 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Recent compilations of experimental and observational data have documented global temperature-dependent patterns of variation in leaf dark respiration (R), but it remains unclear whether local adjustments in respiration over time (through thermal acclimation) are consistent with the patterns in R found across geographical temperature gradients. We integrated results from two global empirical syntheses into a simple temperature-dependent respiration framework to compare the measured effects of respiration acclimation-over-time and variation-across-space to one another, and to a null model in which acclimation is ignored. Using these models, we projected the influence of thermal acclimation on: seasonal variation in R; spatial variation in mean annual R across a global temperature gradient; and future increases in R under climate change. The measured strength of acclimation-over-time produces differences in annual R across spatial temperature gradients that agree well with global variation-across-space. Our models further project that acclimation effects could potentially halve increases in R (compared with the null model) as the climate warms over the 21st Century. Convergence in global temperature-dependent patterns of R indicates that physiological adjustments arising from thermal acclimation are capable of explaining observed variation in leaf respiration at ambient growth temperatures across the globe
Beschreibung:Date Completed 04.05.2016
Date Revised 30.09.2020
published: Print-Electronic
Citation Status MEDLINE
ISSN:1469-8137
DOI:10.1111/nph.13417