Aggregation-induced fabrication of fluorescent organic nanorings : selective biosensing of cysteine and application to molecular logic gate
Self-aggregation behavior in aqueous medium of four naphthalimide derivatives has exhibited substitution-dependent, unusual, aggregation induced emission enhancement (AIEE) phenomena. Absorption, emission, and time-resolved study initially indicated the formation of J-type fluorescent organic nanoag...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 31(2015), 18 vom: 12. Mai, Seite 5025-32 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article Naphthalimides Cysteine K848JZ4886 |
Zusammenfassung: | Self-aggregation behavior in aqueous medium of four naphthalimide derivatives has exhibited substitution-dependent, unusual, aggregation induced emission enhancement (AIEE) phenomena. Absorption, emission, and time-resolved study initially indicated the formation of J-type fluorescent organic nanoaggregates (FONs). Simultaneous applications of infrared spectroscopy, theoretical studies, and dynamic light scattering (DLS) measurements explored the underlying mechanism of such substitution-selective aggregation of a chloro-naphthalimide organic molecule. Furthermore, transmission electron microscopy (TEM) visually confirmed the formation of ring like FONs with average size of 7.5-9.5 nm. Additionally, naphthalimide FONs also exhibited selective and specific cysteine amino acid sensing property. The specific behavior of NPCl aggregation toward amino acids was also employed as a molecular logic gate in information technology (IT) |
---|---|
Beschreibung: | Date Completed 04.02.2016 Date Revised 12.05.2015 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.5b00154 |