A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes

We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to...

Description complète

Détails bibliographiques
Publié dans:Journal of computational physics. - 1986. - 284(2015) vom: 01. März, Seite 95-116
Auteur principal: Dorda, Antonius (Auteur)
Autres auteurs: Schürrer, Ferdinand
Format: Article
Langue:English
Publié: 2015
Accès à la collection:Journal of computational physics
Sujets:Journal Article Quantum transport Resonant tunneling diode Weighted essentially non-oscillatory scheme Wigner function approach
LEADER 01000caa a22002652c 4500
001 NLM248235001
003 DE-627
005 20250218102819.0
007 tu
008 231224s2015 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0827.xml 
035 |a (DE-627)NLM248235001 
035 |a (NLM)25892748 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Dorda, Antonius  |e verfasserin  |4 aut 
245 1 2 |a A WENO-solver combined with adaptive momentum discretization for the Wigner transport equation and its application to resonant tunneling diodes 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 29.09.2020 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a novel numerical scheme for the deterministic solution of the Wigner transport equation, especially suited to deal with situations in which strong quantum effects are present. The unique feature of the algorithm is the expansion of the Wigner function in local basis functions, similar to finite element or finite volume methods. This procedure yields a discretization of the pseudo-differential operator that conserves the particle density on arbitrarily chosen grids. The high flexibility in refining the grid spacing together with the weighted essentially non-oscillatory (WENO) scheme for the advection term allows for an accurate and well-resolved simulation of the phase space dynamics. A resonant tunneling diode is considered as test case and a detailed convergence study is given by comparing the results to a non-equilibrium Green's functions calculation. The impact of the considered domain size and of the grid spacing is analyzed. The obtained convergence of the results towards a quasi-exact agreement of the steady state Wigner and Green's functions computations demonstrates the accuracy of the scheme, as well as the high flexibility to adjust to different physical situations 
650 4 |a Journal Article 
650 4 |a Quantum transport 
650 4 |a Resonant tunneling diode 
650 4 |a Weighted essentially non-oscillatory scheme 
650 4 |a Wigner function approach 
700 1 |a Schürrer, Ferdinand  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational physics  |d 1986  |g 284(2015) vom: 01. März, Seite 95-116  |w (DE-627)NLM098188844  |x 0021-9991  |7 nnas 
773 1 8 |g volume:284  |g year:2015  |g day:01  |g month:03  |g pages:95-116 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 284  |j 2015  |b 01  |c 03  |h 95-116