A comparison of dense region detectors for image search and fine-grained classification

We consider a pipeline for image classification or search based on coding approaches like bag of words or Fisher vectors. In this context, the most common approach is to extract the image patches regularly in a dense manner on several scales. This paper proposes and evaluates alternative choices to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 8 vom: 15. Aug., Seite 2369-81
1. Verfasser: Iscen, Ahmet (VerfasserIn)
Weitere Verfasser: Tolias, Giorgos, Gosselin, Philippe-Henri, Jegou, Herve
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
Beschreibung
Zusammenfassung:We consider a pipeline for image classification or search based on coding approaches like bag of words or Fisher vectors. In this context, the most common approach is to extract the image patches regularly in a dense manner on several scales. This paper proposes and evaluates alternative choices to extract patches densely. Beyond simple strategies derived from regular interest region detectors, we propose approaches based on superpixels, edges, and a bank of Zernike filters used as detectors. The different approaches are evaluated on recent image retrieval and fine-grained classification benchmarks. Our results show that the regular dense detector is outperformed by other methods in most situations, leading us to improve the state-of-the-art in comparable setups on standard retrieval and fined-grained benchmarks. As a byproduct of our study, we show that existing methods for blob and superpixel extraction achieve high accuracy if the patches are extracted along the edges and not around the detected regions
Beschreibung:Date Completed 26.06.2015
Date Revised 19.06.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1941-0042
DOI:10.1109/TIP.2015.2423557