Robust face alignment under occlusion via regional predictive power estimation

Face alignment has been well studied in recent years, however, when a face alignment model is applied on facial images with heavy partial occlusion, the performance deteriorates significantly. In this paper, instead of training an occlusion-aware model with visibility annotation, we address this iss...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 8 vom: 14. Aug., Seite 2393-403
1. Verfasser: Heng Yang (VerfasserIn)
Weitere Verfasser: Xuming He, Xuhui Jia, Patras, Ioannis
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM248035282
003 DE-627
005 20231224150526.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2421438  |2 doi 
028 5 2 |a pubmed24n0826.xml 
035 |a (DE-627)NLM248035282 
035 |a (NLM)25872211 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Heng Yang  |e verfasserin  |4 aut 
245 1 0 |a Robust face alignment under occlusion via regional predictive power estimation 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.02.2016 
500 |a Date Revised 19.06.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Face alignment has been well studied in recent years, however, when a face alignment model is applied on facial images with heavy partial occlusion, the performance deteriorates significantly. In this paper, instead of training an occlusion-aware model with visibility annotation, we address this issue via a model adaptation scheme that uses the result of a local regression forest (RF) voting method. In the proposed scheme, the consistency of the votes of the local RF in each of several oversegmented regions is used to determine the reliability of predicting the location of the facial landmarks. The latter is what we call regional predictive power (RPP). Subsequently, we adapt a holistic voting method (cascaded pose regression based on random ferns) by putting weights on the votes of each fern according to the RPP of the regions used in the fern tests. The proposed method shows superior performance over existing face alignment models in the most challenging data sets (COFW and 300-W). Moreover, it can also estimate with high accuracy (72.4% overlap ratio) which image areas belong to the face or nonface objects, on the heavily occluded images of the COFW data set, without explicit occlusion modeling 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Xuming He  |e verfasserin  |4 aut 
700 1 |a Xuhui Jia  |e verfasserin  |4 aut 
700 1 |a Patras, Ioannis  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 8 vom: 14. Aug., Seite 2393-403  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:8  |g day:14  |g month:08  |g pages:2393-403 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2421438  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 8  |b 14  |c 08  |h 2393-403