Background subtraction based on low-rank and structured sparse decomposition

Low rank and sparse representation based methods, which make few specific assumptions about the background, have recently attracted wide attention in background modeling. With these methods, moving objects in the scene are modeled as pixel-wised sparse outliers. However, in many practical scenarios,...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 8 vom: 02. Aug., Seite 2502-14
1. Verfasser: Xin Liu (VerfasserIn)
Weitere Verfasser: Guoying Zhao, Jiawen Yao, Chun Qi
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM247712256
003 DE-627
005 20231224145819.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2419084  |2 doi 
028 5 2 |a pubmed24n0825.xml 
035 |a (DE-627)NLM247712256 
035 |a (NLM)25838523 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xin Liu  |e verfasserin  |4 aut 
245 1 0 |a Background subtraction based on low-rank and structured sparse decomposition 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 26.06.2015 
500 |a Date Revised 19.06.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Low rank and sparse representation based methods, which make few specific assumptions about the background, have recently attracted wide attention in background modeling. With these methods, moving objects in the scene are modeled as pixel-wised sparse outliers. However, in many practical scenarios, the distributions of these moving parts are not truly pixel-wised sparse but structurally sparse. Meanwhile a robust analysis mechanism is required to handle background regions or foreground movements with varying scales. Based on these two observations, we first introduce a class of structured sparsity-inducing norms to model moving objects in videos. In our approach, we regard the observed sequence as being constituted of two terms, a low-rank matrix (background) and a structured sparse outlier matrix (foreground). Next, in virtue of adaptive parameters for dynamic videos, we propose a saliency measurement to dynamically estimate the support of the foreground. Experiments on challenging well known data sets demonstrate that the proposed approach outperforms the state-of-the-art methods and works effectively on a wide range of complex videos 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Guoying Zhao  |e verfasserin  |4 aut 
700 1 |a Jiawen Yao  |e verfasserin  |4 aut 
700 1 |a Chun Qi  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 8 vom: 02. Aug., Seite 2502-14  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:8  |g day:02  |g month:08  |g pages:2502-14 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2419084  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 8  |b 02  |c 08  |h 2502-14