|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM247491276 |
003 |
DE-627 |
005 |
20231224145336.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/acs.langmuir.5b00438
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0825.xml
|
035 |
|
|
|a (DE-627)NLM247491276
|
035 |
|
|
|a (NLM)25815714
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a van der Kooij, Hanne M
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Coalescence, Cracking, and Crack Healing in Drying Dispersion Droplets
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 15.06.2015
|
500 |
|
|
|a Date Revised 21.04.2015
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status PubMed-not-MEDLINE
|
520 |
|
|
|a The formation of a uniform film from a polymer dispersion is a complex phenomenon involving the interplay of many processes: evaporation and resulting fluid flows through confined geometries, particle packing and deformation, coalescence, and cracking. Understanding this multidimensional problem has proven challenging, precluding a clear understanding of film formation to date. This is especially true for drying dispersion droplets, where the particular geometry introduces additional complexity such as lateral flow toward the droplet periphery. We study the drying of these droplets using a simplified approach in which we systematically vary a single parameter: the glass transition temperature (Tg) of the polymer. We combine optical with scanning electron microscopy to elucidate these processes from the macroscopic down to the single-particle level, both qualitatively and quantitatively, over times ranging from seconds to days. Our results indicate that the polymer Tg has a marked influence on the time evolution of particle deformation and coalescence, giving rise to a distinct and sudden cracking transition. Moreover, in cracked droplets it affects the frequently overlooked time scale of crack healing, giving rise to a second transition from self-healing to permanently cracked droplets. These findings are in line with the classical Routh-Russel model for film formation yet extend its scope from particle-level dynamics to long-range polymer flow
|
650 |
|
4 |
|a Journal Article
|
700 |
1 |
|
|a de Kool, Marleen
|e verfasserin
|4 aut
|
700 |
1 |
|
|a van der Gucht, Jasper
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Sprakel, Joris
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 31(2015), 15 vom: 21. Apr., Seite 4419-28
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2015
|g number:15
|g day:21
|g month:04
|g pages:4419-28
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/acs.langmuir.5b00438
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2015
|e 15
|b 21
|c 04
|h 4419-28
|