Fractal analysis for reduced reference image quality assessment

In this paper, multifractal analysis is adapted to reduced-reference image quality assessment (RR-IQA). A novel RR-QA approach is proposed, which measures the difference of spatial arrangement between the reference image and the distorted image in terms of spatial regularity measured by fractal dime...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 7 vom: 09. Juli, Seite 2098-109
1. Verfasser: Xu, Yong (VerfasserIn)
Weitere Verfasser: Liu, Delei, Quan, Yuhui, Le Callet, Patrick
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM247285420
003 DE-627
005 20231224144901.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2413298  |2 doi 
028 5 2 |a pubmed24n0824.xml 
035 |a (DE-627)NLM247285420 
035 |a (NLM)25794391 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Xu, Yong  |e verfasserin  |4 aut 
245 1 0 |a Fractal analysis for reduced reference image quality assessment 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.05.2015 
500 |a Date Revised 01.04.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, multifractal analysis is adapted to reduced-reference image quality assessment (RR-IQA). A novel RR-QA approach is proposed, which measures the difference of spatial arrangement between the reference image and the distorted image in terms of spatial regularity measured by fractal dimension. An image is first expressed in Log-Gabor domain. Then, fractal dimensions are computed on each Log-Gabor subband and concatenated as a feature vector. Finally, the extracted features are pooled as the quality score of the distorted image using l1 distance. Compared with existing approaches, the proposed method measures image quality from the perspective of the spatial distribution of image patterns. The proposed method was evaluated on seven public benchmark data sets. Experimental results have demonstrated the excellent performance of the proposed method in comparison with state-of-the-art approaches 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Liu, Delei  |e verfasserin  |4 aut 
700 1 |a Quan, Yuhui  |e verfasserin  |4 aut 
700 1 |a Le Callet, Patrick  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 7 vom: 09. Juli, Seite 2098-109  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:7  |g day:09  |g month:07  |g pages:2098-109 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2413298  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 7  |b 09  |c 07  |h 2098-109