Artificial neural network modeling of the water quality index using land use areas as predictors

This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Water environment research : a research publication of the Water Environment Federation. - 1998. - 87(2015), 2 vom: 17. Feb., Seite 99-112
1. Verfasser: Gazzaz, Nabeel M (VerfasserIn)
Weitere Verfasser: Yusoff, Mohd Kamil, Ramli, Mohammad Firuz, Juahir, Hafizan, Aris, Ahmad Zaharin
Format: Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Water environment research : a research publication of the Water Environment Federation
Schlagworte:Journal Article
LEADER 01000caa a22002652 4500
001 NLM247247529
003 DE-627
005 20250218072848.0
007 tu
008 231224s2015 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0824.xml 
035 |a (DE-627)NLM247247529 
035 |a (NLM)25790513 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Gazzaz, Nabeel M  |e verfasserin  |4 aut 
245 1 0 |a Artificial neural network modeling of the water quality index using land use areas as predictors 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Completed 14.04.2015 
500 |a Date Revised 10.12.2019 
500 |a published: Print 
500 |a Citation Status MEDLINE 
520 |a This paper describes the design of an artificial neural network (ANN) model to predict the water quality index (WQI) using land use areas as predictors. Ten-year records of land use statistics and water quality data for Kinta River (Malaysia) were employed in the modeling process. The most accurate WQI predictions were obtained with the network architecture 7-23-1; the back propagation training algorithm; and a learning rate of 0.02. The WQI forecasts of this model had significant (p < 0.01), positive, very high correlation (ρs = 0.882) with the measured WQI values. Sensitivity analysis revealed that the relative importance of the land use classes to WQI predictions followed the order: mining > rubber > forest > logging > urban areas > agriculture > oil palm. These findings show that the ANNs are highly reliable means of relating water quality to land use, thus integrating land use development with river water quality management 
650 4 |a Journal Article 
700 1 |a Yusoff, Mohd Kamil  |e verfasserin  |4 aut 
700 1 |a Ramli, Mohammad Firuz  |e verfasserin  |4 aut 
700 1 |a Juahir, Hafizan  |e verfasserin  |4 aut 
700 1 |a Aris, Ahmad Zaharin  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Water environment research : a research publication of the Water Environment Federation  |d 1998  |g 87(2015), 2 vom: 17. Feb., Seite 99-112  |w (DE-627)NLM098214292  |x 1061-4303  |7 nnns 
773 1 8 |g volume:87  |g year:2015  |g number:2  |g day:17  |g month:02  |g pages:99-112 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 87  |j 2015  |e 2  |b 17  |c 02  |h 99-112