Contact charge electrophoresis : experiment and theory

Contact charge electrophoresis (CCEP) uses steady electric fields to drive the continuous, oscillatory motion of conductive particles and droplets between two or more electrodes. These rapid oscillations can be rectified to direct the motion of objects within microfluidic environments using low-powe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 13 vom: 07. Apr., Seite 3808-14
1. Verfasser: Drews, Aaron M (VerfasserIn)
Weitere Verfasser: Cartier, Charles A, Bishop, Kyle J M
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
LEADER 01000naa a22002652 4500
001 NLM247201251
003 DE-627
005 20231224144716.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1021/acs.langmuir.5b00342  |2 doi 
028 5 2 |a pubmed24n0824.xml 
035 |a (DE-627)NLM247201251 
035 |a (NLM)25785396 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Drews, Aaron M  |e verfasserin  |4 aut 
245 1 0 |a Contact charge electrophoresis  |b experiment and theory 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 03.06.2015 
500 |a Date Revised 07.04.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Contact charge electrophoresis (CCEP) uses steady electric fields to drive the continuous, oscillatory motion of conductive particles and droplets between two or more electrodes. These rapid oscillations can be rectified to direct the motion of objects within microfluidic environments using low-power, dc voltage. Here, we compare high precision experimental measurements of CCEP within a microfluidic system to equally detailed theoretical predictions on the motion of a conductive particle between parallel electrodes. We use a simple, capillary microfluidic platform that combines high-speed imaging with precision electrical measurements to enable the synchronized acquisition of both the particle location and the electric current due to particle motion. The experimental results are compared to those of a theoretical model, which relies on a Stokesian dynamics approach to accurately describe both the electrostatic and hydrodynamic problems governing particle motion. We find remarkable agreement between theory and experiment, suggesting that particle motion can be accurately captured by a combination of classical electrostatics and low-Reynolds number hydrodynamics. Building on this agreement, we offer new insight into the charge transfer process that occurs when the particle nears contact with an electrode surface. In particular, we find that the particle does not make mechanical contact with the electrode but rather that charge transfer occurs at finite surface separations of >0.1 μm by means of an electric discharge through a thin lubricating film. We discuss the implications of these findings on the charging of the particle and its subsequent dynamics 
650 4 |a Journal Article 
700 1 |a Cartier, Charles A  |e verfasserin  |4 aut 
700 1 |a Bishop, Kyle J M  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Langmuir : the ACS journal of surfaces and colloids  |d 1992  |g 31(2015), 13 vom: 07. Apr., Seite 3808-14  |w (DE-627)NLM098181009  |x 1520-5827  |7 nnns 
773 1 8 |g volume:31  |g year:2015  |g number:13  |g day:07  |g month:04  |g pages:3808-14 
856 4 0 |u http://dx.doi.org/10.1021/acs.langmuir.5b00342  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_22 
912 |a GBV_ILN_350 
912 |a GBV_ILN_721 
951 |a AR 
952 |d 31  |j 2015  |e 13  |b 07  |c 04  |h 3808-14