Face recognition across non-uniform motion blur, illumination, and pose

Existing methods for performing face recognition in the presence of blur are based on the convolution model and cannot handle non-uniform blurring situations that frequently arise from tilts and rotations in hand-held cameras. In this paper, we propose a methodology for face recognition in the prese...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 7 vom: 01. Juli, Seite 2067-82
1. Verfasser: Punnappurath, Abhijith (VerfasserIn)
Weitere Verfasser: Rajagopalan, Ambasamudram Narayanan, Taheri, Sima, Chellappa, Rama, Seetharaman, Guna
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM247126020
003 DE-627
005 20231224144538.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2412379  |2 doi 
028 5 2 |a pubmed24n0823.xml 
035 |a (DE-627)NLM247126020 
035 |a (NLM)25775493 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Punnappurath, Abhijith  |e verfasserin  |4 aut 
245 1 0 |a Face recognition across non-uniform motion blur, illumination, and pose 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 14.12.2015 
500 |a Date Revised 01.04.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Existing methods for performing face recognition in the presence of blur are based on the convolution model and cannot handle non-uniform blurring situations that frequently arise from tilts and rotations in hand-held cameras. In this paper, we propose a methodology for face recognition in the presence of space-varying motion blur comprising of arbitrarily-shaped kernels. We model the blurred face as a convex combination of geometrically transformed instances of the focused gallery face, and show that the set of all images obtained by non-uniformly blurring a given image forms a convex set. We first propose a non-uniform blur-robust algorithm by making use of the assumption of a sparse camera trajectory in the camera motion space to build an energy function with l1 -norm constraint on the camera motion. The framework is then extended to handle illumination variations by exploiting the fact that the set of all images obtained from a face image by non-uniform blurring and changing the illumination forms a bi-convex set. Finally, we propose an elegant extension to also account for variations in pose 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Rajagopalan, Ambasamudram Narayanan  |e verfasserin  |4 aut 
700 1 |a Taheri, Sima  |e verfasserin  |4 aut 
700 1 |a Chellappa, Rama  |e verfasserin  |4 aut 
700 1 |a Seetharaman, Guna  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 7 vom: 01. Juli, Seite 2067-82  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:7  |g day:01  |g month:07  |g pages:2067-82 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2412379  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 7  |b 01  |c 07  |h 2067-82