Undersampled face recognition via robust auxiliary dictionary learning

In this paper, we address the problem of robust face recognition with undersampled training data. Given only one or few training images available per subject, we present a novel recognition approach, which not only handles test images with large intraclass variations such as illumination and express...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 6 vom: 25. Juni, Seite 1722-34
1. Verfasser: Wei, Chia-Po (VerfasserIn)
Weitere Verfasser: Wang, Yu-Chiang Frank
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM247064335
003 DE-627
005 20231224144419.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2409738  |2 doi 
028 5 2 |a pubmed24n0823.xml 
035 |a (DE-627)NLM247064335 
035 |a (NLM)25769163 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wei, Chia-Po  |e verfasserin  |4 aut 
245 1 0 |a Undersampled face recognition via robust auxiliary dictionary learning 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 20.05.2015 
500 |a Date Revised 31.03.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we address the problem of robust face recognition with undersampled training data. Given only one or few training images available per subject, we present a novel recognition approach, which not only handles test images with large intraclass variations such as illumination and expression. The proposed method is also to handle the corrupted ones due to occlusion or disguise, which is not present during training. This is achieved by the learning of a robust auxiliary dictionary from the subjects not of interest. Together with the undersampled training data, both intra and interclass variations can thus be successfully handled, while the unseen occlusions can be automatically disregarded for improved recognition. Our experiments on four face image datasets confirm the effectiveness and robustness of our approach, which is shown to outperform state-of-the-art sparse representation-based methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Wang, Yu-Chiang Frank  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 6 vom: 25. Juni, Seite 1722-34  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:6  |g day:25  |g month:06  |g pages:1722-34 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2409738  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 6  |b 25  |c 06  |h 1722-34