Graph-cut based discrete-valued image reconstruction

Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we d...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 5 vom: 25. Mai, Seite 1614-27
1. Verfasser: Tuysuzoglu, Ahmet (VerfasserIn)
Weitere Verfasser: Karl, W Clem, Stojanovic, Ivana, Castañòn, David, Ünlü, M Selim
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000naa a22002652 4500
001 NLM247064300
003 DE-627
005 20231224144419.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
028 5 2 |a pubmed24n0823.xml 
035 |a (DE-627)NLM247064300 
035 |a (NLM)25769159 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Tuysuzoglu, Ahmet  |e verfasserin  |4 aut 
245 1 0 |a Graph-cut based discrete-valued image reconstruction 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.05.2015 
500 |a Date Revised 04.05.2015 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a Efficient graph-cut methods have been used with great success for labeling and denoising problems occurring in computer vision. Unfortunately, the presence of linear image mappings has prevented the use of these techniques in most discrete-amplitude image reconstruction problems. In this paper, we develop a graph-cut based framework for the direct solution of discrete amplitude linear image reconstruction problems cast as regularized energy function minimizations. We first analyze the structure of discrete linear inverse problem cost functions to show that the obstacle to the application of graph-cut methods to their solution is the variable mixing caused by the presence of the linear sensing operator. We then propose to use a surrogate energy functional that overcomes the challenges imposed by the sensing operator yet can be utilized efficiently in existing graph-cut frameworks. We use this surrogate energy functional to devise a monotonic iterative algorithm for the solution of discrete valued inverse problems. We first provide experiments using local convolutional operators and show the robustness of the proposed technique to noise and stability to changes in regularization parameter. Then we focus on nonlocal, tomographic examples where we consider limited-angle data problems. We compare our technique with state-of-the-art discrete and continuous image reconstruction techniques. Experiments show that the proposed method outperforms state-of-the-art techniques in challenging scenarios involving discrete valued unknowns 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Karl, W Clem  |e verfasserin  |4 aut 
700 1 |a Stojanovic, Ivana  |e verfasserin  |4 aut 
700 1 |a Castañòn, David  |e verfasserin  |4 aut 
700 1 |a Ünlü, M Selim  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 5 vom: 25. Mai, Seite 1614-27  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:5  |g day:25  |g month:05  |g pages:1614-27 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 5  |b 25  |c 05  |h 1614-27