Photoacoustic imaging of nanoparticle- containing cells using single-element focused transducer : a simulation study

A new theoretical approach for photoacoustic (PA) image simulation of an ensemble of cells with endocytosed gold nanoparticles is presented. Each cell was approximated as a fluid sphere and suspended in a nonabsorbing fluid medium. It was assumed that the cellular optical absorption coefficient chan...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on ultrasonics, ferroelectrics, and frequency control. - 1986. - 62(2015), 3 vom: 12. März, Seite 463-74
1. Verfasser: Karmakar, Subhajit (VerfasserIn)
Weitere Verfasser: Roy, Madhusudan, Saha, Ratan K
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on ultrasonics, ferroelectrics, and frequency control
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:A new theoretical approach for photoacoustic (PA) image simulation of an ensemble of cells with endocytosed gold nanoparticles is presented. Each cell was approximated as a fluid sphere and suspended in a nonabsorbing fluid medium. It was assumed that the cellular optical absorption coefficient changed greatly because of endocytosis of nanoparticles; however, thermophysical parameters remained unchanged because nanoparticles occupied negligible intracellular volume. A frequency-domain method was used to obtain a PA signal from a single cell and resultant signal detected by a focused single-element transducer was evaluated by convolving signals from many cells with the spatial impulse response function of the receiver. The proposed model was explored to simulate PA images of numerical phantoms. It was observed that features of the phantoms are retained precisely in those simulated images. Also, speckles in PA images are significantly suppressed because of strong boundary buildup when cells are bounded to a region. Nevertheless, speckle visibility increases when cells are not bounded to a region. This approach may be developed as a realistic simulation tool for PA imaging of tissue medium utilizing its cellular feature
Beschreibung:Date Completed 12.05.2015
Date Revised 15.03.2015
published: Print
Citation Status PubMed-not-MEDLINE
ISSN:1525-8955
DOI:10.1109/TUFFC.2014.006786