Matching of large images through coupled decomposition

In this paper, we address the problem of fast and accurate extraction of points that correspond to the same location (named tie-points) from pairs of large-sized images. First, we conduct a theoretical analysis of the performance of the full-image matching approach, demonstrating its limitations whe...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 7 vom: 09. Juli, Seite 2124-39
1. Verfasser: Sidiropoulos, Panagiotis (VerfasserIn)
Weitere Verfasser: Muller, Jan-Peter
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM246898003
003 DE-627
005 20231224144047.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2409978  |2 doi 
028 5 2 |a pubmed24n0823.xml 
035 |a (DE-627)NLM246898003 
035 |a (NLM)25751865 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Sidiropoulos, Panagiotis  |e verfasserin  |4 aut 
245 1 0 |a Matching of large images through coupled decomposition 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.05.2015 
500 |a Date Revised 11.04.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we address the problem of fast and accurate extraction of points that correspond to the same location (named tie-points) from pairs of large-sized images. First, we conduct a theoretical analysis of the performance of the full-image matching approach, demonstrating its limitations when applied to large images. Subsequently, we introduce a novel technique to impose spatial constraints on the matching process without employing subsampled versions of the reference and the target image, which we name coupled image decomposition. This technique splits images into corresponding subimages through a process that is theoretically invariant to geometric transformations, additive noise, and global radiometric differences, as well as being robust to local changes. After presenting it, we demonstrate how coupled image decomposition can be used both for image registration and for automatic estimation of epipolar geometry. Finally, coupled image decomposition is tested on a data set consisting of several planetary images of different size, varying from less than one megapixel to several hundreds of megapixels. The reported experimental results, which includes comparison with full-image matching and state-of-the-art techniques, demonstrate the substantial computational cost reduction that can be achieved when matching large images through coupled decomposition, without at the same time compromising the overall matching accuracy 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Muller, Jan-Peter  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 7 vom: 09. Juli, Seite 2124-39  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:7  |g day:09  |g month:07  |g pages:2124-39 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2409978  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 7  |b 09  |c 07  |h 2124-39