Molecular dynamics study of alkylsilane monolayers on realistic amorphous silica surfaces

Interfacial properties of n-alkylsilane monolayers on silica have been investigated with molecular dynamics simulations using both reactive and classical (i.e., nonreactive) force fields. A synthesis mimetic simulation (SMS) procedure using the reactive force field ReaxFF has been developed to mimic...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 10 vom: 17. März, Seite 3086-93
1. Verfasser: Black, Jana E (VerfasserIn)
Weitere Verfasser: Iacovella, Christopher R, Cummings, Peter T, McCabe, Clare
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Interfacial properties of n-alkylsilane monolayers on silica have been investigated with molecular dynamics simulations using both reactive and classical (i.e., nonreactive) force fields. A synthesis mimetic simulation (SMS) procedure using the reactive force field ReaxFF has been developed to mimic the experimental processing of silicon wafers involved in the preparation of alkylsilane monolayers; in the SMS procedure, amorphous silica surfaces are generated and exposed to hydrogen peroxide (H2O2) to create a hydroxide surface layer. Alkylsilane monolayers are then assembled on these surfaces, and their behavior is studied. To investigate the impact of the SMS procedure on monolayer properties, simulations have also been performed using more idealized monolayers assembled on crystalline surfaces and non-H2O2-processed amorphous surfaces. The simulations reported here demonstrate that processing-induced silica surface roughness plays a key role in the structure and frictional performance of monolayers. Furthermore, ignoring these effects results in a significant underestimation of the coefficient of friction and an overestimation of the orientational ordering of the monolayers
Beschreibung:Date Completed 12.05.2015
Date Revised 17.03.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la5049858