Superomniphobic and easily repairable coatings on copper substrates based on simple immersion or spray processes
Textures that resemble typical fern or bracken plant species (dendrite structures) were fabricated for liquid repellency by dipping copper substrates in a single-step process in solutions containing AgNO3 or by a simple spray liquid application. Superhydrophobic surfaces were produced using a soluti...
Veröffentlicht in: | Langmuir : the ACS journal of surfaces and colloids. - 1985. - 31(2015), 11 vom: 24. März, Seite 3465-72 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Langmuir : the ACS journal of surfaces and colloids |
Schlagworte: | Journal Article |
Zusammenfassung: | Textures that resemble typical fern or bracken plant species (dendrite structures) were fabricated for liquid repellency by dipping copper substrates in a single-step process in solutions containing AgNO3 or by a simple spray liquid application. Superhydrophobic surfaces were produced using a solution containing AgNO3 and trimethoxypropylsilane (TMPSi), and superomniphobic surfaces were produced by a two-step procedure, immersing the copper substrate in a AgNO3 solution and, after that, in a solution containing 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES). The simple functionalization processes can also be used when the superomniphobic surfaces were destroyed by mechanical stress. By immersion of the wrecked surfaces in the above solutions or by the spray method and soft heating, the copper substrates could be easily repaired, regenerating the surfaces' superrepellency to liquids. The micro- and nanoroughness structures generated on copper surfaces by the deposition of silver dendrites functionalized with TMPSi presented apparent contact angles greater than 150° with a contact angle hysteresis lower than 10° when water was used as the test liquid. To avoid total wettability with very low surface tension liquids, such as rapeseed oil and hexadecane, a thin perfluorinated coating of poly(tetrafluoroethylene) (PTFE), produced by physical vapor deposition, was used. A more efficient perfluorinated coating was obtained when PFDTES was used. The superomniphobic surfaces produced apparent contact angles above 150° with all of the tested liquids, including hexadecane, although the contact angle hysteresis with this liquid was above 10°. The coupling of dendritic structures with TMPSi/PTFE or directly by PFDTES coatings was responsible for the superrepellency of the as-prepared surfaces. These simple, fast, and reliable procedures allow the large area, and cost-effective scale fabrication of superrepellent surfaces on copper substrates for various industrial applications with the advantage of easy recovery of the surface repellency after damage |
---|---|
Beschreibung: | Date Completed 14.05.2015 Date Revised 24.03.2015 published: Print-Electronic Citation Status PubMed-not-MEDLINE |
ISSN: | 1520-5827 |
DOI: | 10.1021/acs.langmuir.5b00193 |