LEADER 01000caa a22002652c 4500
001 NLM246526548
003 DE-627
005 20250218053134.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1016/j.plantsci.2015.01.012  |2 doi 
028 5 2 |a pubmed25n0821.xml 
035 |a (DE-627)NLM246526548 
035 |a (NLM)25711823 
035 |a (PII)S0168-9452(15)00031-X 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Subbarao, Guntur Venkata  |e verfasserin  |4 aut 
245 1 0 |a Suppression of soil nitrification by plants 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 09.11.2015 
500 |a Date Revised 30.09.2020 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a Copyright © 2015 Elsevier Ireland Ltd. All rights reserved. 
520 |a Nitrification, the biological oxidation of ammonium to nitrate, weakens the soil's ability to retain N and facilitates N-losses from production agriculture through nitrate-leaching and denitrification. This process has a profound influence on what form of mineral-N is absorbed, used by plants, and retained in the soil, or lost to the environment, which in turn affects N-cycling, N-use efficiency (NUE) and ecosystem health and services. As reactive-N is often the most limiting in natural ecosystems, plants have acquired a range of mechanisms that suppress soil-nitrifier activity to limit N-losses via N-leaching and denitrification. Plants' ability to produce and release nitrification inhibitors from roots and suppress soil-nitrifier activity is termed 'biological nitrification inhibition' (BNI). With recent developments in methodology for in-situ measurement of nitrification inhibition, it is now possible to characterize BNI function in plants. This review assesses the current status of our understanding of the production and release of biological nitrification inhibitors (BNIs) and their potential in improving NUE in agriculture. A suite of genetic, soil and environmental factors regulate BNI activity in plants. BNI-function can be genetically exploited to improve the BNI-capacity of major food- and feed-crops to develop next-generation production systems with reduced nitrification and N2O emission rates to benefit both agriculture and the environment. The feasibility of such an approach is discussed based on the progresses made 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
650 4 |a Review 
650 4 |a Biological nitrification inhibition (BNI) 
650 4 |a Climate change 
650 4 |a Global warming 
650 4 |a Nitrification inhibitors 
650 4 |a Nitrogen use efficiency (NUE) 
650 4 |a Nitrous oxide emissions 
650 7 |a Soil  |2 NLM 
650 7 |a Nitrous Oxide  |2 NLM 
650 7 |a K50XQU1029  |2 NLM 
650 7 |a Nitrogen  |2 NLM 
650 7 |a N762921K75  |2 NLM 
700 1 |a Yoshihashi, Tadashi  |e verfasserin  |4 aut 
700 1 |a Worthington, Margaret  |e verfasserin  |4 aut 
700 1 |a Nakahara, Kazuhiko  |e verfasserin  |4 aut 
700 1 |a Ando, Yasuo  |e verfasserin  |4 aut 
700 1 |a Sahrawat, Kanwar Lal  |e verfasserin  |4 aut 
700 1 |a Rao, Idupulapati Madhusudhana  |e verfasserin  |4 aut 
700 1 |a Lata, Jean-Christophe  |e verfasserin  |4 aut 
700 1 |a Kishii, Masahiro  |e verfasserin  |4 aut 
700 1 |a Braun, Hans-Joachim  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Plant science : an international journal of experimental plant biology  |d 1985  |g 233(2015) vom: 17. Apr., Seite 155-164  |w (DE-627)NLM098174193  |x 1873-2259  |7 nnas 
773 1 8 |g volume:233  |g year:2015  |g day:17  |g month:04  |g pages:155-164 
856 4 0 |u http://dx.doi.org/10.1016/j.plantsci.2015.01.012  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 233  |j 2015  |b 17  |c 04  |h 155-164