Robust discriminative tracking via landmark-based label propagation

The appearance of an object could be continuously changing during tracking, thereby being not independent identically distributed. A good discriminative tracker often needs a large number of training samples to fit the underlying data distribution, which is impractical for visual tracking. In this p...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 5 vom: 19. Mai, Seite 1510-23
1. Verfasser: Wu, Yuwei (VerfasserIn)
Weitere Verfasser: Pei, Mingtao, Yang, Min, Yuan, Junsong, Jia, Yunde
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM246476435
003 DE-627
005 20231224143140.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2405479  |2 doi 
028 5 2 |a pubmed24n0821.xml 
035 |a (DE-627)NLM246476435 
035 |a (NLM)25706637 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Wu, Yuwei  |e verfasserin  |4 aut 
245 1 0 |a Robust discriminative tracking via landmark-based label propagation 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.05.2015 
500 |a Date Revised 15.03.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a The appearance of an object could be continuously changing during tracking, thereby being not independent identically distributed. A good discriminative tracker often needs a large number of training samples to fit the underlying data distribution, which is impractical for visual tracking. In this paper, we present a new discriminative tracker via landmark-based label propagation (LLP) that is nonparametric and makes no specific assumption about the sample distribution. With an undirected graph representation of samples, the LLP locally approximates the soft label of each sample by a linear combination of labels on its nearby landmarks. It is able to effectively propagate a limited amount of initial labels to a large amount of unlabeled samples. To this end, we introduce a local landmarks approximation method to compute the cross-similarity matrix between the whole data and landmarks. Moreover, a soft label prediction function incorporating the graph Laplacian regularizer is used to diffuse the known labels to all the unlabeled vertices in the graph, which explicitly considers the local geometrical structure of all samples. Tracking is then carried out within a Bayesian inference framework, where the soft label prediction value is used to construct the observation model. Both qualitative and quantitative evaluations on the benchmark data set containing 51 challenging image sequences demonstrate that the proposed algorithm outperforms the state-of-the-art methods 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Pei, Mingtao  |e verfasserin  |4 aut 
700 1 |a Yang, Min  |e verfasserin  |4 aut 
700 1 |a Yuan, Junsong  |e verfasserin  |4 aut 
700 1 |a Jia, Yunde  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 5 vom: 19. Mai, Seite 1510-23  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:5  |g day:19  |g month:05  |g pages:1510-23 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2405479  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 5  |b 19  |c 05  |h 1510-23