A coarse-grained MARTINI-like force field for DNA unzipping in nanopores

© 2015 Wiley Periodicals, Inc.

Détails bibliographiques
Publié dans:Journal of computational chemistry. - 1984. - 36(2015), 13 vom: 15. Mai, Seite 947-56
Auteur principal: Stachiewicz, Anna (Auteur)
Autres auteurs: Molski, Andrzej
Format: Article en ligne
Langue:English
Publié: 2015
Accès à la collection:Journal of computational chemistry
Sujets:Journal Article DNA MARTINI coarse-grained models molecular dynamics nanopores 9007-49-2
LEADER 01000caa a22002652c 4500
001 NLM24647629X
003 DE-627
005 20250218052437.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.23874  |2 doi 
028 5 2 |a pubmed25n0821.xml 
035 |a (DE-627)NLM24647629X 
035 |a (NLM)25706623 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Stachiewicz, Anna  |e verfasserin  |4 aut 
245 1 2 |a A coarse-grained MARTINI-like force field for DNA unzipping in nanopores 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.10.2015 
500 |a Date Revised 23.04.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2015 Wiley Periodicals, Inc. 
520 |a In nanopore force spectroscopy (NFS) a charged polymer is threaded through a channel of molecular dimensions. When an electric field is applied across the insulating membrane, the ionic current through the nanopore reports on polymer translocation, unzipping, dissociation, and so forth. We present a new model that can be applied in molecular dynamics simulations of NFS. Although simplified, it does reproduce experimental trends and all-atom simulations. The scaled conductivities in bulk solution are consistent with experimental results for NaCl for a wide range of electrolyte concentrations and temperatures. The dependence of the ionic current through a nanopore on the applied voltage is symmetric and, in the voltage range used in experiments (up to 2 V), linear and in good agreement with experimental data. The thermal stability and geometry of DNA is well represented. The model was applied to simulations of DNA hairpin unzipping in nanopores. The results are in good agreement with all-atom simulations: the scaled translocation times and unzipping sequence are similar 
650 4 |a Journal Article 
650 4 |a DNA 
650 4 |a MARTINI 
650 4 |a coarse-grained models 
650 4 |a molecular dynamics 
650 4 |a nanopores 
650 7 |a DNA  |2 NLM 
650 7 |a 9007-49-2  |2 NLM 
700 1 |a Molski, Andrzej  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 36(2015), 13 vom: 15. Mai, Seite 947-56  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnas 
773 1 8 |g volume:36  |g year:2015  |g number:13  |g day:15  |g month:05  |g pages:947-56 
856 4 0 |u http://dx.doi.org/10.1002/jcc.23874  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2015  |e 13  |b 15  |c 05  |h 947-56