Chemical and morphological filters in a specialized floral mimicry system
© 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Publié dans: | The New phytologist. - 1979. - 207(2015), 1 vom: 23. Juli, Seite 225-234 |
---|---|
Auteur principal: | |
Autres auteurs: | , , , , |
Format: | Article en ligne |
Langue: | English |
Publié: |
2015
|
Accès à la collection: | The New phytologist |
Sujets: | Journal Article Research Support, Non-U.S. Gov't Gastrodia Scaptodrosophila floral signalling mycoheterotrophic plants pollinator specialization rotting fruit/yeast mimicry semiochemicals touch-sensitive organ |
Résumé: | © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust. Many plant species attract insect pollinators through chemical mimicry of their oviposition sites, often detaining them in a trap chamber that ensures pollen transfer. These plant mimics are considered to be unspecialized at the pollinator species level, yet field observations of a mycoheterotrophic rainforest orchid (Gastrodia similis), which emits an odour reminiscent of rotting fruit, indicate that it is pollinated by a single drosophilid fly species (Scaptodrosophila bangi). We investigated the roles of floral volatiles and the dimensions of the trap chamber in enforcing this specialization, using gas chromatography-mass spectrometry analyses, bioassays and scanning electron microscopy. We showed that G. similis flowers predominantly emit three fatty-acid esters (ethyl acetate, ethyl isobutyrate and methyl isobutyrate) that were shown in experiments to attract only Scaptodrosophila flies. We additionally showed that the trap chamber, which flies enter into via a touch-sensitive 'trapdoor', closely matches the body size of the pollinator species S. bangi and plays a key role in pollen transfer. Our study demonstrates that specialization in oviposition site mimicry is due primarily to volatile chemistry and is reflected in the dimensions of the trapping apparatus. It also indicates that mycoheterotrophic plants can be specialized both on mycorrhizal fungi and insect pollinators |
---|---|
Description: | Date Completed 08.04.2016 Date Revised 16.04.2021 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.13350 |