Hierarchical graphical models for simultaneous tracking and recognition in wide-area scenes

We present a unified framework to track multiple people, as well localize, and label their activities, in complex long-duration video sequences. To do this, we focus on two aspects: 1) the influence of tracks on the activities performed by the corresponding actors and 2) the structural relationships...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 7 vom: 16. Juli, Seite 2025-36
1. Verfasser: Nayak, Nandita M (VerfasserIn)
Weitere Verfasser: Zhu, Yingying, Chowdhury, Amit K Roy
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, U.S. Gov't, Non-P.H.S.
LEADER 01000caa a22002652 4500
001 NLM246415797
003 DE-627
005 20250218051640.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2404034  |2 doi 
028 5 2 |a pubmed25n0821.xml 
035 |a (DE-627)NLM246415797 
035 |a (NLM)25700452 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Nayak, Nandita M  |e verfasserin  |4 aut 
245 1 0 |a Hierarchical graphical models for simultaneous tracking and recognition in wide-area scenes 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 23.05.2015 
500 |a Date Revised 01.04.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We present a unified framework to track multiple people, as well localize, and label their activities, in complex long-duration video sequences. To do this, we focus on two aspects: 1) the influence of tracks on the activities performed by the corresponding actors and 2) the structural relationships across activities. We propose a two-level hierarchical graphical model, which learns the relationship between tracks, relationship between tracks, and their corresponding activity segments, as well as the spatiotemporal relationships across activity segments. Such contextual relationships between tracks and activity segments are exploited at both the levels in the hierarchy for increased robustness. An L1-regularized structure learning approach is proposed for this purpose. While it is well known that availability of the labels and locations of activities can help in determining tracks more accurately and vice-versa, most current approaches have dealt with these problems separately. Inspired by research in the area of biological vision, we propose a bidirectional approach that integrates both bottom-up and top-down processing, i.e., bottom-up recognition of activities using computed tracks and top-down computation of tracks using the obtained recognition. We demonstrate our results on the recent and publicly available UCLA and VIRAT data sets consisting of realistic indoor and outdoor surveillance sequences 
650 4 |a Journal Article 
650 4 |a Research Support, U.S. Gov't, Non-P.H.S. 
700 1 |a Zhu, Yingying  |e verfasserin  |4 aut 
700 1 |a Chowdhury, Amit K Roy  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 7 vom: 16. Juli, Seite 2025-36  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:7  |g day:16  |g month:07  |g pages:2025-36 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2404034  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 7  |b 16  |c 07  |h 2025-36