Aboveground insect infestation attenuates belowground Agrobacterium-mediated genetic transformation
© 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.
Veröffentlicht in: | The New phytologist. - 1979. - 207(2015), 1 vom: 24. Juli, Seite 148-158 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | The New phytologist |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't Agrobacterium crown gall multitrophic interactions salicylic acid (SA) transformation efficiency whitefly infestation Cyclopentanes Oxylipins mehr... |
Zusammenfassung: | © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust. Agrobacterium tumefaciens causes crown gall disease. Although Agrobacterium can be popularly used for genetic engineering, the influence of aboveground insect infestation on Agrobacterium induced gall formation has not been investigated. Nicotiana benthamiana leaves were exposed to a sucking insect (whitefly) infestation and benzothiadiazole (BTH) for 7 d, and these exposed plants were inoculated with a tumorigenic Agrobacterium strain. We evaluated, both in planta and in vitro, how whitefly infestation affects crown gall disease. Whitefly-infested plants exhibited at least a two-fold reduction in gall formation on both stem and crown root. Silencing of isochorismate synthase 1 (ICS1), required for salicylic acid (SA) synthesis, compromised gall formation indicating an involvement of SA in whitefly-derived plant defence against Agrobacterium. Endogenous SA content was augmented in whitefly-infested plants upon Agrobacterium inoculation. In addition, SA concentration was three times higher in root exudates from whitefly-infested plants. As a consequence, Agrobacterium-mediated transformation of roots of whitefly-infested plants was clearly inhibited when compared to control plants. These results suggest that aboveground whitefly infestation elicits systemic defence responses throughout the plant. Our findings provide new insights into insect-mediated leaf-root intra-communication and a framework to understand interactions between three organisms: whitefly, N. benthamiana and Agrobacterium |
---|---|
Beschreibung: | Date Completed 08.04.2016 Date Revised 13.12.2023 published: Print-Electronic GENBANK: U60489 Citation Status MEDLINE |
ISSN: | 1469-8137 |
DOI: | 10.1111/nph.13324 |