Graph-based representation for multiview image geometry

In this paper, we propose a new geometry representation method for multiview image sets. Our approach relies on graphs to describe the multiview geometry information in a compact and controllable way. The links of the graph connect pixels in different images and describe the proximity between pixels...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 5 vom: 11. Mai, Seite 1573-86
1. Verfasser: Maugey, Thomas (VerfasserIn)
Weitere Verfasser: Ortega, Antonio, Frossard, Pascal
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000caa a22002652 4500
001 NLM246176369
003 DE-627
005 20250218044830.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2400817  |2 doi 
028 5 2 |a pubmed25n0820.xml 
035 |a (DE-627)NLM246176369 
035 |a (NLM)25675455 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Maugey, Thomas  |e verfasserin  |4 aut 
245 1 0 |a Graph-based representation for multiview image geometry 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.05.2015 
500 |a Date Revised 18.03.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a In this paper, we propose a new geometry representation method for multiview image sets. Our approach relies on graphs to describe the multiview geometry information in a compact and controllable way. The links of the graph connect pixels in different images and describe the proximity between pixels in 3D space. These connections are dependent on the geometry of the scene and provide the right amount of information that is necessary for coding and reconstructing multiple views. Our multiview image representation is very compact and adapts the transmitted geometry information as a function of the complexity of the prediction performed at the decoder side. To achieve this, our graph-based representation (GBR) carefully selects the amount of geometry information needed before coding. This is in contrast with depth coding, which directly compresses with losses the original geometry signal, thus making it difficult to quantify the impact of coding errors on geometry-based interpolation. We present the principles of this GBR and we build an efficient coding algorithm to represent it. We compare our GBR approach to classical depth compression methods and compare their respective view synthesis qualities as a function of the compactness of the geometry description. We show that GBR can achieve significant gains in geometry coding rate over depth-based schemes operating at similar quality. Experimental results demonstrate the potential of this new representation 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a Ortega, Antonio  |e verfasserin  |4 aut 
700 1 |a Frossard, Pascal  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 5 vom: 11. Mai, Seite 1573-86  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:5  |g day:11  |g month:05  |g pages:1573-86 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2400817  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 5  |b 11  |c 05  |h 1573-86