|
|
|
|
LEADER |
01000naa a22002652 4500 |
001 |
NLM24617126X |
003 |
DE-627 |
005 |
20231224142503.0 |
007 |
cr uuu---uuuuu |
008 |
231224s2015 xx |||||o 00| ||eng c |
024 |
7 |
|
|a 10.1021/la504424u
|2 doi
|
028 |
5 |
2 |
|a pubmed24n0820.xml
|
035 |
|
|
|a (DE-627)NLM24617126X
|
035 |
|
|
|a (NLM)25674921
|
040 |
|
|
|a DE-627
|b ger
|c DE-627
|e rakwb
|
041 |
|
|
|a eng
|
100 |
1 |
|
|a Park, Hanhee
|e verfasserin
|4 aut
|
245 |
1 |
0 |
|a Highly stable phase change material emulsions fabricated by interfacial assembly of amphiphilic block copolymers during phase inversion
|
264 |
|
1 |
|c 2015
|
336 |
|
|
|a Text
|b txt
|2 rdacontent
|
337 |
|
|
|a ƒaComputermedien
|b c
|2 rdamedia
|
338 |
|
|
|a ƒa Online-Ressource
|b cr
|2 rdacarrier
|
500 |
|
|
|a Date Completed 08.12.2015
|
500 |
|
|
|a Date Revised 02.12.2018
|
500 |
|
|
|a published: Print-Electronic
|
500 |
|
|
|a Citation Status MEDLINE
|
520 |
|
|
|a This study introduced a robust and promising approach to fabricate highly stable phase change material (PCM) emulsions consisting of n-tetradecane as a dispersed phase and a mixture of meso-2,3-butanediol (m-BDO) and water as a continuous phase. We showed that amphiphilic poly(ethylene oxide)-b-poly(ε-caprolactone) block copolymers assembled to form a flexible but tough polymer membrane at the interface during phase inversion from water-in-oil emulsion to oil-in-water emulsion, thus remarkably improving the emulsion stability. Although the incorporation of m-BDO into the emulsion lowered the phase changing enthalpy, it provided a useful means to elevate the melting temperature of the emulsions near to 15 °C. Interestingly, supercooling was commonly observed in our PCM emulsions. We attributed this to the fact that the PCM molecules confined in submicron-scale droplets could not effectively nucleate to grow molecular crystals. Moreover, the presence of m-BDO in the continuous phase rather dominated the heat emission of the emulsion system during freezing, which made the supercooling more favorable
|
650 |
|
4 |
|a Journal Article
|
650 |
|
4 |
|a Research Support, Non-U.S. Gov't
|
650 |
|
7 |
|a Butylene Glycols
|2 NLM
|
650 |
|
7 |
|a Emulsions
|2 NLM
|
650 |
|
7 |
|a Lactones
|2 NLM
|
650 |
|
7 |
|a Membranes, Artificial
|2 NLM
|
650 |
|
7 |
|a poly(ethylene oxide)-b-poly(caprolactone)
|2 NLM
|
650 |
|
7 |
|a Water
|2 NLM
|
650 |
|
7 |
|a 059QF0KO0R
|2 NLM
|
650 |
|
7 |
|a Polyethylene Glycols
|2 NLM
|
650 |
|
7 |
|a 3WJQ0SDW1A
|2 NLM
|
650 |
|
7 |
|a 2,3-butylene glycol
|2 NLM
|
650 |
|
7 |
|a 45427ZB5IJ
|2 NLM
|
700 |
1 |
|
|a Han, Dong Wan
|e verfasserin
|4 aut
|
700 |
1 |
|
|a Kim, Jin Woong
|e verfasserin
|4 aut
|
773 |
0 |
8 |
|i Enthalten in
|t Langmuir : the ACS journal of surfaces and colloids
|d 1992
|g 31(2015), 9 vom: 10. März, Seite 2649-54
|w (DE-627)NLM098181009
|x 1520-5827
|7 nnns
|
773 |
1 |
8 |
|g volume:31
|g year:2015
|g number:9
|g day:10
|g month:03
|g pages:2649-54
|
856 |
4 |
0 |
|u http://dx.doi.org/10.1021/la504424u
|3 Volltext
|
912 |
|
|
|a GBV_USEFLAG_A
|
912 |
|
|
|a SYSFLAG_A
|
912 |
|
|
|a GBV_NLM
|
912 |
|
|
|a GBV_ILN_22
|
912 |
|
|
|a GBV_ILN_350
|
912 |
|
|
|a GBV_ILN_721
|
951 |
|
|
|a AR
|
952 |
|
|
|d 31
|j 2015
|e 9
|b 10
|c 03
|h 2649-54
|