Double nuclear norm-based matrix decomposition for occluded image recovery and background modeling

Robust principal component analysis (RPCA) is a new emerging method for exact recovery of corrupted low-rank matrices. It assumes that the real data matrix has low rank and the error matrix is sparse. This paper presents a method called double nuclear norm-based matrix decomposition (DNMD) for deali...

Description complète

Détails bibliographiques
Publié dans:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 6 vom: 10. Juni, Seite 1956-66
Auteur principal: Zhang, Fanlong (Auteur)
Autres auteurs: Yang, Jian, Tai, Ying, Tang, Jinhui
Format: Article en ligne
Langue:English
Publié: 2015
Accès à la collection:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Sujets:Journal Article Research Support, Non-U.S. Gov't