Double nuclear norm-based matrix decomposition for occluded image recovery and background modeling
Robust principal component analysis (RPCA) is a new emerging method for exact recovery of corrupted low-rank matrices. It assumes that the real data matrix has low rank and the error matrix is sparse. This paper presents a method called double nuclear norm-based matrix decomposition (DNMD) for deali...
| Veröffentlicht in: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 6 vom: 10. Juni, Seite 1956-66 |
|---|---|
| 1. Verfasser: | |
| Weitere Verfasser: | , , |
| Format: | Online-Aufsatz |
| Sprache: | English |
| Veröffentlicht: |
2015
|
| Zugriff auf das übergeordnete Werk: | IEEE transactions on image processing : a publication of the IEEE Signal Processing Society |
| Schlagworte: | Journal Article Research Support, Non-U.S. Gov't |
| Online verfügbar |
Volltext |