Double nuclear norm-based matrix decomposition for occluded image recovery and background modeling

Robust principal component analysis (RPCA) is a new emerging method for exact recovery of corrupted low-rank matrices. It assumes that the real data matrix has low rank and the error matrix is sparse. This paper presents a method called double nuclear norm-based matrix decomposition (DNMD) for deali...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 6 vom: 10. Juni, Seite 1956-66
1. Verfasser: Zhang, Fanlong (VerfasserIn)
Weitere Verfasser: Yang, Jian, Tai, Ying, Tang, Jinhui
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't