Enhanced ozonation of selected pharmaceutical compounds by sonolysis
In search of new options to achieve removal of pharmaceuticals in the environment, combined ultrasound and ozonation has become a focus of intense investigation for wastewater treatment. In this study, three pharmaceuticals were selected as model compounds for degradation experiments: diclofenac (DC...
Veröffentlicht in: | Environmental technology. - 1993. - 36(2015), 13-16 vom: 06. Juli, Seite 1876-83 |
---|---|
1. Verfasser: | |
Weitere Verfasser: | , , , , |
Format: | Online-Aufsatz |
Sprache: | English |
Veröffentlicht: |
2015
|
Zugriff auf das übergeordnete Werk: | Environmental technology |
Schlagworte: | Journal Article Research Support, Non-U.S. Gov't advanced oxidation processes degradation emerging contaminants ozone ultrasound Pharmaceutical Preparations Water Pollutants, Chemical Ozone |
Zusammenfassung: | In search of new options to achieve removal of pharmaceuticals in the environment, combined ultrasound and ozonation has become a focus of intense investigation for wastewater treatment. In this study, three pharmaceuticals were selected as model compounds for degradation experiments: diclofenac (DCF), sulfamethoxazole (SMX) and carbamazepine (CBZ). Comparison of the degradation rates for both ozonation and combined ultrasound/ozonation treatments was performed on single synthetic solutions as well as on a mixture of the selected pharmaceuticals, under different experimental conditions. For single synthetic solutions, the efficiency removal for ozonation reached 73%, 51% and 59% after 40 min for DCF, SMX and CBZ, respectively. Comparable results were obtained for pharmaceuticals in mixture. However, the combined ultrasound/ozone treatment was found to increase degradation efficiencies for both DCF and SMX single solutions up to 94% and 61%, respectively, whereas lower removal yields, up to 56%, was noted for CBZ. Likewise, when the combined treatment was applied to the mixture, relatively low removal efficiencies was found for CBZ (44%) and 90% degradation yield was achieved for DCF |
---|---|
Beschreibung: | Date Completed 10.09.2015 Date Revised 13.05.2015 published: Print-Electronic Citation Status MEDLINE |
ISSN: | 1479-487X |
DOI: | 10.1080/09593330.2015.1014864 |