MetREx : a protein design approach for the exploration of sequence-reactivity relationships in metalloenzymes

© 2014 Wiley Periodicals, Inc.

Bibliographische Detailangaben
Veröffentlicht in:Journal of computational chemistry. - 1984. - 36(2015), 8 vom: 30. März, Seite 553-63
1. Verfasser: Stiebritz, Martin T (VerfasserIn)
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Journal of computational chemistry
Schlagworte:Journal Article metalloenzymes protein design quantum mechanics/molecular mechanics sequence-reactivity relationship Bacterial Proteins Enzymes Metalloproteins
LEADER 01000naa a22002652 4500
001 NLM245927417
003 DE-627
005 20231224141939.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1002/jcc.23831  |2 doi 
028 5 2 |a pubmed24n0819.xml 
035 |a (DE-627)NLM245927417 
035 |a (NLM)25649465 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Stiebritz, Martin T  |e verfasserin  |4 aut 
245 1 0 |a MetREx  |b a protein design approach for the exploration of sequence-reactivity relationships in metalloenzymes 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 30.10.2015 
500 |a Date Revised 24.02.2015 
500 |a published: Print-Electronic 
500 |a Citation Status MEDLINE 
520 |a © 2014 Wiley Periodicals, Inc. 
520 |a Metalloenzymes represent a particular challenge for any rational (re)design approach because the modeling of reaction events at their metallic cofactors requires time-consuming quantum mechanical calculations, which cannot easily be reconciled with the fast, knowledge-based approaches commonly applied in protein design studies. Here, an approach for the exploration of sequence-reactivity relationships in metalloenzymes is presented (MetREx) that consists of force field-based screening of mutants that lie energetically between a wild-type sequence and the global minimum energy conformation and which should, therefore, be compatible with a given protein fold. Mutant candidates are subsequently evaluated with a fast and approximate quantum mechanical/molecular mechanical-like procedure that models the influence of the protein environment on the active site by taking partial charges and van der Waals repulsions into account. The feasibility of the procedure is demonstrated for the active site of [FeFe] hydrogenase from Desulfovibrio desulfuricans. The method described allows for the identification of mutants with altered properties, such as inhibitor-coordination energies, and the understanding of the robustness of enzymatic reaction steps with respect to variations in sequence space 
650 4 |a Journal Article 
650 4 |a metalloenzymes 
650 4 |a protein design 
650 4 |a quantum mechanics/molecular mechanics 
650 4 |a sequence-reactivity relationship 
650 7 |a Bacterial Proteins  |2 NLM 
650 7 |a Enzymes  |2 NLM 
650 7 |a Metalloproteins  |2 NLM 
773 0 8 |i Enthalten in  |t Journal of computational chemistry  |d 1984  |g 36(2015), 8 vom: 30. März, Seite 553-63  |w (DE-627)NLM098138448  |x 1096-987X  |7 nnns 
773 1 8 |g volume:36  |g year:2015  |g number:8  |g day:30  |g month:03  |g pages:553-63 
856 4 0 |u http://dx.doi.org/10.1002/jcc.23831  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 36  |j 2015  |e 8  |b 30  |c 03  |h 553-63