Learning view-model joint relevance for 3D object retrieval

3D object retrieval has attracted extensive research efforts and become an important task in recent years. It is noted that how to measure the relevance between 3D objects is still a difficult issue. Most of the existing methods employ just the model-based or view-based approaches, which may lead to...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society. - 1992. - 24(2015), 5 vom: 02. Mai, Seite 1449-59
1. Verfasser: Lu, Ke (VerfasserIn)
Weitere Verfasser: He, Ning, Xue, Jian, Dong, Jiyang, Shao, Ling
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on image processing : a publication of the IEEE Signal Processing Society
Schlagworte:Journal Article Research Support, Non-U.S. Gov't
LEADER 01000naa a22002652 4500
001 NLM245868933
003 DE-627
005 20231224141822.0
007 cr uuu---uuuuu
008 231224s2015 xx |||||o 00| ||eng c
024 7 |a 10.1109/TIP.2015.2395961  |2 doi 
028 5 2 |a pubmed24n0819.xml 
035 |a (DE-627)NLM245868933 
035 |a (NLM)25643404 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Lu, Ke  |e verfasserin  |4 aut 
245 1 0 |a Learning view-model joint relevance for 3D object retrieval 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ƒaComputermedien  |b c  |2 rdamedia 
338 |a ƒa Online-Ressource  |b cr  |2 rdacarrier 
500 |a Date Completed 19.05.2015 
500 |a Date Revised 15.03.2015 
500 |a published: Print-Electronic 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a 3D object retrieval has attracted extensive research efforts and become an important task in recent years. It is noted that how to measure the relevance between 3D objects is still a difficult issue. Most of the existing methods employ just the model-based or view-based approaches, which may lead to incomplete information for 3D object representation. In this paper, we propose to jointly learn the view-model relevance among 3D objects for retrieval, in which the 3D objects are formulated in different graph structures. With the view information, the multiple views of 3D objects are employed to formulate the 3D object relationship in an object hypergraph structure. With the model data, the model-based features are extracted to construct an object graph to describe the relationship among the 3D objects. The learning on the two graphs is conducted to estimate the relevance among the 3D objects, in which the view/model graph weights can be also optimized in the learning process. This is the first work to jointly explore the view-based and model-based relevance among the 3D objects in a graph-based framework. The proposed method has been evaluated in three data sets. The experimental results and comparison with the state-of-the-art methods demonstrate the effectiveness on retrieval accuracy of the proposed 3D object retrieval method 
650 4 |a Journal Article 
650 4 |a Research Support, Non-U.S. Gov't 
700 1 |a He, Ning  |e verfasserin  |4 aut 
700 1 |a Xue, Jian  |e verfasserin  |4 aut 
700 1 |a Dong, Jiyang  |e verfasserin  |4 aut 
700 1 |a Shao, Ling  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on image processing : a publication of the IEEE Signal Processing Society  |d 1992  |g 24(2015), 5 vom: 02. Mai, Seite 1449-59  |w (DE-627)NLM09821456X  |x 1941-0042  |7 nnns 
773 1 8 |g volume:24  |g year:2015  |g number:5  |g day:02  |g month:05  |g pages:1449-59 
856 4 0 |u http://dx.doi.org/10.1109/TIP.2015.2395961  |3 Volltext 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 24  |j 2015  |e 5  |b 02  |c 05  |h 1449-59