Effect of structure of cationic comb copolymers on their adsorption and stabilization of titania nanoparticles

Cationic linear polymer poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride) p(METAC), neutral brush polymer poly(poly(ethylene glycol) methyl ether methacrylate) p(PEO22MEMA), and cationic comb copolymers p(METAC-PEO(x)MEMA) were used for the stabilization of titania dispersions under neutra...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:Langmuir : the ACS journal of surfaces and colloids. - 1992. - 31(2015), 7 vom: 24. Feb., Seite 2074-83
1. Verfasser: Klimkevicius, Vaidas (VerfasserIn)
Weitere Verfasser: Graule, Thomas, Makuska, Ricardas
Format: Online-Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:Langmuir : the ACS journal of surfaces and colloids
Schlagworte:Journal Article
Beschreibung
Zusammenfassung:Cationic linear polymer poly([2-(methacryloyloxy)ethyl] trimethylammonium chloride) p(METAC), neutral brush polymer poly(poly(ethylene glycol) methyl ether methacrylate) p(PEO22MEMA), and cationic comb copolymers p(METAC-PEO(x)MEMA) were used for the stabilization of titania dispersions under neutral and alkaline conditions. Random comb copolymers p(METAC-PEO(x)MEMA) differing in charge density and length of PEO side chains were synthesized by RAFT. The adsorption of cationic polymers on titania nanoparticles was evaluated by thermogravimetric analysis; changes in surface potential, by measuring the zeta potential; and the stability of the treated TiO2 dispersions, by laser diffraction and DLS. Cationic linear and comb copolymers containing relatively short PEO side chains promoted the inversion of nanoparticle surface potential from strongly negative (-60 mV) to moderately positive (10-35 mV). Cationic comb copolymers containing longer PEO side chains increased the zeta potential of the treated nanoparticles but did not invert it to positive. Aqueous dispersions of titania nanoparticles stabilized by cationic comb copolymers under alkaline conditions (pH 10) were dispersed by high-energy planetary ball milling up to a primary particle size of 20 nm and were stable for at least 2 days
Beschreibung:Date Completed 06.08.2015
Date Revised 24.02.2015
published: Print-Electronic
Citation Status PubMed-not-MEDLINE
ISSN:1520-5827
DOI:10.1021/la504213t