Optimal Feature Selection in High-Dimensional Discriminant Analysis

We consider the high-dimensional discriminant analysis problem. For this problem, different methods have been proposed and justified by establishing exact convergence rates for the classification risk, as well as the ℓ2 convergence results to the discriminative rule. However, sharp theoretical analy...

Ausführliche Beschreibung

Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory. - 1998. - 61(2015), 2 vom: 01. Feb., Seite 1063-1083
1. Verfasser: Kolar, Mladen (VerfasserIn)
Weitere Verfasser: Liu, Han
Format: Aufsatz
Sprache:English
Veröffentlicht: 2015
Zugriff auf das übergeordnete Werk:IEEE transactions on information theory
Schlagworte:Journal Article discriminant analysis high-dimensional statistics optimal rates of convergence variable selection
LEADER 01000caa a22002652 4500
001 NLM245651497
003 DE-627
005 20250218023659.0
007 tu
008 231224s2015 xx ||||| 00| ||eng c
028 5 2 |a pubmed25n0818.xml 
035 |a (DE-627)NLM245651497 
035 |a (NLM)25620807 
040 |a DE-627  |b ger  |c DE-627  |e rakwb 
041 |a eng 
100 1 |a Kolar, Mladen  |e verfasserin  |4 aut 
245 1 0 |a Optimal Feature Selection in High-Dimensional Discriminant Analysis 
264 1 |c 2015 
336 |a Text  |b txt  |2 rdacontent 
337 |a ohne Hilfsmittel zu benutzen  |b n  |2 rdamedia 
338 |a Band  |b nc  |2 rdacarrier 
500 |a Date Revised 01.10.2020 
500 |a published: Print 
500 |a Citation Status PubMed-not-MEDLINE 
520 |a We consider the high-dimensional discriminant analysis problem. For this problem, different methods have been proposed and justified by establishing exact convergence rates for the classification risk, as well as the ℓ2 convergence results to the discriminative rule. However, sharp theoretical analysis for the variable selection performance of these procedures have not been established, even though model interpretation is of fundamental importance in scientific data analysis. This paper bridges the gap by providing sharp sufficient conditions for consistent variable selection using the sparse discriminant analysis (Mai et al., 2012). Through careful analysis, we establish rates of convergence that are significantly faster than the best known results and admit an optimal scaling of the sample size n, dimensionality p, and sparsity level s in the high-dimensional setting. Sufficient conditions are complemented by the necessary information theoretic limits on the variable selection problem in the context of high-dimensional discriminant analysis. Exploiting a numerical equivalence result, our method also establish the optimal results for the ROAD estimator (Fan et al., 2012) and the sparse optimal scaling estimator (Clemmensen et al., 2011). Furthermore, we analyze an exhaustive search procedure, whose performance serves as a benchmark, and show that it is variable selection consistent under weaker conditions. Extensive simulations demonstrating the sharpness of the bounds are also provided 
650 4 |a Journal Article 
650 4 |a discriminant analysis 
650 4 |a high-dimensional statistics 
650 4 |a optimal rates of convergence 
650 4 |a variable selection 
700 1 |a Liu, Han  |e verfasserin  |4 aut 
773 0 8 |i Enthalten in  |t IEEE transactions on information theory  |d 1998  |g 61(2015), 2 vom: 01. Feb., Seite 1063-1083  |w (DE-627)NLM098163418  |x 0018-9448  |7 nnns 
773 1 8 |g volume:61  |g year:2015  |g number:2  |g day:01  |g month:02  |g pages:1063-1083 
912 |a GBV_USEFLAG_A 
912 |a SYSFLAG_A 
912 |a GBV_NLM 
912 |a GBV_ILN_350 
951 |a AR 
952 |d 61  |j 2015  |e 2  |b 01  |c 02  |h 1063-1083